Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 28534 by abdo imad last updated on 26/Jan/18

find n from N  in ordre tohave x^2 +x+1 divide  (x+1)^n −x^n −1.

findnfromNinordretohavex2+x+1divide(x+1)nxn1.

Commented by abdo imad last updated on 28/Jan/18

let put p(x)= (x+1)^n −x^n −1 and q(x)=x^2 +x+1 the roots  of p(x)are  j=e^(i((2π)/3))   and j^− =e^(−i((2π)/3))    q divide p ⇔p(j)=p(j^− )=0  but p(j)=o ⇔(j+1)^n  −j^n −1=0 ⇔(−1)^n j^(2n)  −j^n −1=0  p(j^− )=0 ⇔ (1+j^− )^2  −j^−^n   −1=0 ⇔(−1)^n j^−^(2n)   −j^−^n  −1=0⇒(−1)  (−1)^n ( (j^(2n)  −j^−^(2n)  )−(j^n  −j^−^n  )=0  (−1)^n 2i Im(j^(2n) )− 2i Im(j^n )=0  (−1)^n sin(((4nπ)/3))−sin(((2nπ)/3))=0  ⇔sin(((4nπ)/3))=(−1)^n sin(((2nπ)/3))  (e)  case 1    n=2p  (e)⇔ ((4nπ)/3) =((2nπ)/3) +2kπ  or  ((4nπ)/3) =π−((2nπ)/3) +2kπ     (k∈Z)  ⇔4n =2n +6k or 4n= 3−2n +6k  n=3k   or 6n= 6k+3  n=3k  or n=k +(1/2)(to eliminate)⇔n=3k  =2p⇒  k=2s   and n=6s    case 2   n=2p+1  (e) ⇔ sin(((4nπ)/3))=sin(−((2nπ)/3)) ⇔ ((4nπ)/3)=((−2nπ)/3) +2kπ or  ((4nπ)/3)= π +((2nπ)/3) +2kπ  ⇔4n =−2n +6k  or 4n= 3 +2n +6k  ⇔n=k  or 2n=3+6k(to eliminate) ⇔n=k=2p+1 so  q divide p  ⇔ n=6p or n=2p+1.

letputp(x)=(x+1)nxn1andq(x)=x2+x+1therootsofp(x)arej=ei2π3andj=ei2π3qdividepp(j)=p(j)=0butp(j)=o(j+1)njn1=0(1)nj2njn1=0p(j)=0(1+j)2jn1=0(1)nj2njn1=0(1)(1)n((j2nj2n)(jnjn)=0(1)n2iIm(j2n)2iIm(jn)=0(1)nsin(4nπ3)sin(2nπ3)=0sin(4nπ3)=(1)nsin(2nπ3)(e)case1n=2p(e)4nπ3=2nπ3+2kπor4nπ3=π2nπ3+2kπ(kZ)4n=2n+6kor4n=32n+6kn=3kor6n=6k+3n=3korn=k+12(toeliminate)n=3k=2pk=2sandn=6scase2n=2p+1(e)sin(4nπ3)=sin(2nπ3)4nπ3=2nπ3+2kπor4nπ3=π+2nπ3+2kπ4n=2n+6kor4n=3+2n+6kn=kor2n=3+6k(toeliminate)n=k=2p+1soqdividepn=6porn=2p+1.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com