Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 28574 by ajfour last updated on 27/Jan/18

Commented by ajfour last updated on 27/Jan/18

Find entire green area in terms  of r, 𝛉 . The two frames are  square frames with common  centre. Find also the maximum  of the area for constant r.

$${Find}\:{entire}\:{green}\:{area}\:{in}\:{terms} \\ $$$${of}\:\boldsymbol{{r}},\:\boldsymbol{\theta}\:.\:{The}\:{two}\:{frames}\:{are} \\ $$$${square}\:{frames}\:{with}\:{common} \\ $$$${centre}.\:{Find}\:{also}\:{the}\:{maximum} \\ $$$${of}\:{the}\:{area}\:{for}\:{constant}\:\boldsymbol{{r}}. \\ $$

Commented by ajfour last updated on 29/Jan/18

mrW2 Sir, would you solve this?

$${mrW}\mathrm{2}\:{Sir},\:{would}\:{you}\:{solve}\:{this}? \\ $$

Answered by mrW2 last updated on 29/Jan/18

Commented by ajfour last updated on 29/Jan/18

thank you enormously Sir!  extremely satisfactory!

$${thank}\:{you}\:{enormously}\:{Sir}! \\ $$$${extremely}\:{satisfactory}! \\ $$

Commented by mrW2 last updated on 29/Jan/18

Eqn. of AB:  x=(a/2) with a=(√2)r  Eqn. of CD (=AB rotated by θ)  x cos θ+y sin θ=(a/2)    (a/2) cos θ+y_E  sin θ=(a/2)  ⇒y_E =((a(1−cos θ))/(2 sin θ))  x_F  cos θ+(a/2) sin θ=(a/2)  ⇒x_F =((a(1−sin θ))/(2 cos θ))    A_(ΔBEF) =(1/2)[(a/2)−((a(1−sin θ))/(2 cos θ))][(a/2)−((a(1−cos θ))/(2 sin θ))]  A_(ΔBEF) =(a^2 /8)[((cos θ−1+sin θ)/(cos θ))][((sin θ−1+cos θ)/( sin θ))]  A_(ΔBEF) =(a^2 /8)×(((cos θ+sin θ−1)^2 )/(sin θ cos θ))  A_(ΔBEF) =(a^2 /4)[1−((cos θ+sin θ−1)/(sin θ cos θ))]  A_(Green) =4A_(ΔBEF)   A_(Green) (θ)=a^2 [1−((cos θ+sin θ−1)/(sin θ cos θ))]  A_(Green) (θ)=2r^2 [1−((cos θ+sin θ−1)/(sin θ cos θ))]  with 0≤θ≤(π/2)  A_(Green) ((π/2)+θ)=A_(Green) (θ)    f(θ)=1−((cos θ+sin θ−1)/(sin θ cos θ))  f(θ)=1+((2[1−(√2) sin (θ+(π/4))])/(sin 2θ))  max. f(θ)=1+((2[1−(√2)])/1)=3−2(√2)≈0.17  at θ=(π/4)  ⇒max.A_(Green) =(3−2(√2))a^2 ≈0.17a^2 ≈0.34r^2

$${Eqn}.\:{of}\:{AB}: \\ $$$${x}=\frac{{a}}{\mathrm{2}}\:{with}\:{a}=\sqrt{\mathrm{2}}{r} \\ $$$${Eqn}.\:{of}\:{CD}\:\left(={AB}\:{rotated}\:{by}\:\theta\right) \\ $$$${x}\:\mathrm{cos}\:\theta+{y}\:\mathrm{sin}\:\theta=\frac{{a}}{\mathrm{2}} \\ $$$$ \\ $$$$\frac{{a}}{\mathrm{2}}\:\mathrm{cos}\:\theta+{y}_{{E}} \:\mathrm{sin}\:\theta=\frac{{a}}{\mathrm{2}} \\ $$$$\Rightarrow{y}_{{E}} =\frac{{a}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{2}\:\mathrm{sin}\:\theta} \\ $$$${x}_{{F}} \:\mathrm{cos}\:\theta+\frac{{a}}{\mathrm{2}}\:\mathrm{sin}\:\theta=\frac{{a}}{\mathrm{2}} \\ $$$$\Rightarrow{x}_{{F}} =\frac{{a}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)}{\mathrm{2}\:\mathrm{cos}\:\theta} \\ $$$$ \\ $$$${A}_{\Delta{BEF}} =\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{a}}{\mathrm{2}}−\frac{{a}\left(\mathrm{1}−\mathrm{sin}\:\theta\right)}{\mathrm{2}\:\mathrm{cos}\:\theta}\right]\left[\frac{{a}}{\mathrm{2}}−\frac{{a}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{2}\:\mathrm{sin}\:\theta}\right] \\ $$$${A}_{\Delta{BEF}} =\frac{{a}^{\mathrm{2}} }{\mathrm{8}}\left[\frac{\mathrm{cos}\:\theta−\mathrm{1}+\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}\right]\left[\frac{\mathrm{sin}\:\theta−\mathrm{1}+\mathrm{cos}\:\theta}{\:\mathrm{sin}\:\theta}\right] \\ $$$${A}_{\Delta{BEF}} =\frac{{a}^{\mathrm{2}} }{\mathrm{8}}×\frac{\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta} \\ $$$${A}_{\Delta{BEF}} =\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\left[\mathrm{1}−\frac{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta−\mathrm{1}}{\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}\right] \\ $$$${A}_{{Green}} =\mathrm{4}{A}_{\Delta{BEF}} \\ $$$${A}_{{Green}} \left(\theta\right)={a}^{\mathrm{2}} \left[\mathrm{1}−\frac{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta−\mathrm{1}}{\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}\right] \\ $$$${A}_{{Green}} \left(\theta\right)=\mathrm{2}{r}^{\mathrm{2}} \left[\mathrm{1}−\frac{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta−\mathrm{1}}{\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}\right] \\ $$$${with}\:\mathrm{0}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}} \\ $$$${A}_{{Green}} \left(\frac{\pi}{\mathrm{2}}+\theta\right)={A}_{{Green}} \left(\theta\right) \\ $$$$ \\ $$$${f}\left(\theta\right)=\mathrm{1}−\frac{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta−\mathrm{1}}{\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta} \\ $$$${f}\left(\theta\right)=\mathrm{1}+\frac{\mathrm{2}\left[\mathrm{1}−\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{4}}\right)\right]}{\mathrm{sin}\:\mathrm{2}\theta} \\ $$$${max}.\:{f}\left(\theta\right)=\mathrm{1}+\frac{\mathrm{2}\left[\mathrm{1}−\sqrt{\mathrm{2}}\right]}{\mathrm{1}}=\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\approx\mathrm{0}.\mathrm{17} \\ $$$${at}\:\theta=\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow{max}.{A}_{{Green}} =\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right){a}^{\mathrm{2}} \approx\mathrm{0}.\mathrm{17}{a}^{\mathrm{2}} \approx\mathrm{0}.\mathrm{34}{r}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com