Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 28585 by Tinkutara last updated on 27/Jan/18

Answered by ajfour last updated on 27/Jan/18

collision for m_1  is elastic.  after collision, velocity of m_1   is reversed; kinetic energy   is regathered as spring comes to  relaxed length     K_i =m_1 gh       m_1  still rises further by ′x′ till it stops  just when m_2  breaks off the  surface, so     kx=m_2 g   ...(i)       K_1 =K_f +△U_g +△U_(spring)        m_1 gh=0+m_1 gx+(1/2)kx^2                    =x(m_1 g+((kx)/2))  using (i)        h=((m_2 g)/k)(1+(m_2 /(2m_1 ))) .

$${collision}\:{for}\:{m}_{\mathrm{1}} \:{is}\:{elastic}. \\ $$$${after}\:{collision},\:{velocity}\:{of}\:{m}_{\mathrm{1}} \\ $$$${is}\:{reversed};\:{kinetic}\:{energy}\: \\ $$$${is}\:{regathered}\:{as}\:{spring}\:{comes}\:{to} \\ $$$${relaxed}\:{length} \\ $$$$\:\:\:{K}_{{i}} ={m}_{\mathrm{1}} {gh}\:\:\:\:\: \\ $$$${m}_{\mathrm{1}} \:{still}\:{rises}\:{further}\:{by}\:'\boldsymbol{{x}}'\:{till}\:{it}\:{stops} \\ $$$${just}\:{when}\:{m}_{\mathrm{2}} \:{breaks}\:{off}\:{the} \\ $$$${surface},\:{so}\:\:\:\:\:\boldsymbol{{kx}}=\boldsymbol{{m}}_{\mathrm{2}} \boldsymbol{{g}}\:\:\:...\left({i}\right) \\ $$$$\:\:\:\:\:\boldsymbol{{K}}_{\mathrm{1}} =\boldsymbol{{K}}_{{f}} +\bigtriangleup\boldsymbol{{U}}_{{g}} +\bigtriangleup\boldsymbol{{U}}_{{spring}} \\ $$$$\:\:\:\:\:{m}_{\mathrm{1}} {gh}=\mathrm{0}+{m}_{\mathrm{1}} {gx}+\frac{\mathrm{1}}{\mathrm{2}}{kx}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={x}\left({m}_{\mathrm{1}} {g}+\frac{{kx}}{\mathrm{2}}\right) \\ $$$${using}\:\left({i}\right) \\ $$$$\:\:\:\:\:\:\boldsymbol{{h}}=\frac{\boldsymbol{{m}}_{\mathrm{2}} \boldsymbol{{g}}}{\boldsymbol{{k}}}\left(\mathrm{1}+\frac{\boldsymbol{{m}}_{\mathrm{2}} }{\mathrm{2}\boldsymbol{{m}}_{\mathrm{1}} }\right)\:. \\ $$

Commented by Tinkutara last updated on 27/Jan/18

Why collision of m1 is elastic?

Commented by ajfour last updated on 27/Jan/18

only conservative forces acted  on it .

$${only}\:{conservative}\:{forces}\:{acted} \\ $$$${on}\:{it}\:. \\ $$

Commented by Tinkutara last updated on 28/Jan/18

But what is the datum assumed here?

Commented by ajfour last updated on 28/Jan/18

in simpler words please ..

Commented by Tinkutara last updated on 28/Jan/18

What is the reference line assumed for calculating potential energy?

Commented by ajfour last updated on 28/Jan/18

with m_2  at ground level the  level of m_1  when spring comes  to natural length after collision  is taken to be the reference level  of gravitational potential energy.

$${with}\:{m}_{\mathrm{2}} \:{at}\:{ground}\:{level}\:{the} \\ $$$${level}\:{of}\:{m}_{\mathrm{1}} \:{when}\:{spring}\:{comes} \\ $$$${to}\:{natural}\:{length}\:{after}\:{collision} \\ $$$${is}\:{taken}\:{to}\:{be}\:{the}\:{reference}\:{level} \\ $$$${of}\:{gravitational}\:{potential}\:{energy}. \\ $$

Commented by Tinkutara last updated on 28/Jan/18

But then they should be −m_1 gh and  −m_1 gx. Or not?

$${But}\:{then}\:{they}\:{should}\:{be}\:−{m}_{\mathrm{1}} {gh}\:{and} \\ $$$$−{m}_{\mathrm{1}} {gx}.\:{Or}\:{not}? \\ $$

Commented by ajfour last updated on 28/Jan/18

No, spring is being stretched after  this due to momentum of m_1 .  m_1  is rising up.

$${No},\:{spring}\:{is}\:{being}\:{stretched}\:{after} \\ $$$${this}\:{due}\:{to}\:{momentum}\:{of}\:{m}_{\mathrm{1}} . \\ $$$${m}_{\mathrm{1}} \:{is}\:{rising}\:{up}. \\ $$

Commented by Tinkutara last updated on 28/Jan/18

But potential energy when measured downwards should be taken negative or not?

Commented by ajfour last updated on 28/Jan/18

K_0  of m_1 =−△U                     =−(−m_1 gh) =m_1 gh  just before m_2  hits the ground:  after this there is m_2  collides  with ground and looses all its  kinetic energy. m_1  compresses  the spring and thereafter, by the  time springs regains its original  length m_1  regathers its Kinetic  energy. the level of m_1  at this  level is now taken to be initial  position to apply work energy  theorwm. K_1  of m_1  =K_0 =m_1 gh.  m_1  rises beyond this point and  by the time its speed gets zero,  m_2  is breaks contact.  work-energy eq. for m_1  is  W_(ext) =K_2 −K_1 +△U_g +△U_(spring)   0=(0−m_1 gh)+(m_1 gx−0)+((1/2)kx^2 −0)  spring force finally is kx=m_2 g  hence  m_1 gh=x(m_1 g+((kx)/2))  h=x(1+((kx)/(2m_1 g))) = ((m_2 g)/k)(1+(m_2 /(2m_1 ))) .

$${K}_{\mathrm{0}} \:{of}\:{m}_{\mathrm{1}} =−\bigtriangleup{U} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\left(−{m}_{\mathrm{1}} {gh}\right)\:={m}_{\mathrm{1}} {gh} \\ $$$${just}\:{before}\:{m}_{\mathrm{2}} \:{hits}\:{the}\:{ground}: \\ $$$${after}\:{this}\:{there}\:{is}\:{m}_{\mathrm{2}} \:{collides} \\ $$$${with}\:{ground}\:{and}\:{looses}\:{all}\:{its} \\ $$$${kinetic}\:{energy}.\:{m}_{\mathrm{1}} \:{compresses} \\ $$$${the}\:{spring}\:{and}\:{thereafter},\:{by}\:{the} \\ $$$${time}\:{springs}\:{regains}\:{its}\:{original} \\ $$$${length}\:{m}_{\mathrm{1}} \:{regathers}\:{its}\:{Kinetic} \\ $$$${energy}.\:{the}\:{level}\:{of}\:{m}_{\mathrm{1}} \:{at}\:{this} \\ $$$${level}\:{is}\:{now}\:{taken}\:{to}\:{be}\:{initial} \\ $$$${position}\:{to}\:{apply}\:{work}\:{energy} \\ $$$${theorwm}.\:{K}_{\mathrm{1}} \:{of}\:{m}_{\mathrm{1}} \:={K}_{\mathrm{0}} ={m}_{\mathrm{1}} {gh}. \\ $$$${m}_{\mathrm{1}} \:{rises}\:{beyond}\:{this}\:{point}\:{and} \\ $$$${by}\:{the}\:{time}\:{its}\:{speed}\:{gets}\:{zero}, \\ $$$${m}_{\mathrm{2}} \:{is}\:{breaks}\:{contact}. \\ $$$${work}-{energy}\:{eq}.\:{for}\:{m}_{\mathrm{1}} \:{is} \\ $$$${W}_{{ext}} ={K}_{\mathrm{2}} −{K}_{\mathrm{1}} +\bigtriangleup{U}_{{g}} +\bigtriangleup{U}_{{spring}} \\ $$$$\mathrm{0}=\left(\mathrm{0}−{m}_{\mathrm{1}} {gh}\right)+\left({m}_{\mathrm{1}} {gx}−\mathrm{0}\right)+\left(\frac{\mathrm{1}}{\mathrm{2}}{kx}^{\mathrm{2}} −\mathrm{0}\right) \\ $$$${spring}\:{force}\:{finally}\:{is}\:{kx}={m}_{\mathrm{2}} {g} \\ $$$${hence} \\ $$$${m}_{\mathrm{1}} {gh}={x}\left({m}_{\mathrm{1}} {g}+\frac{{kx}}{\mathrm{2}}\right) \\ $$$${h}={x}\left(\mathrm{1}+\frac{{kx}}{\mathrm{2}{m}_{\mathrm{1}} {g}}\right)\:=\:\frac{\boldsymbol{{m}}_{\mathrm{2}} \boldsymbol{{g}}}{\boldsymbol{{k}}}\left(\mathrm{1}+\frac{\boldsymbol{{m}}_{\mathrm{2}} }{\mathrm{2}\boldsymbol{{m}}_{\mathrm{1}} }\right)\:. \\ $$

Commented by Tinkutara last updated on 29/Jan/18

Thank you very much Sir! I got the answer.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com