Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28613 by abdo imad last updated on 27/Jan/18

let give x>0  and S(x)= ∫_0 ^∞    ((sint)/(e^(xt) −1))dt .  developp S at form of series.

$${let}\:{give}\:{x}>\mathrm{0}\:\:{and}\:{S}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sint}}{{e}^{{xt}} −\mathrm{1}}{dt}\:. \\ $$ $${developp}\:{S}\:{at}\:{form}\:{of}\:{series}. \\ $$

Commented byabdo imad last updated on 01/Feb/18

S(x)= ∫_0 ^∞  ((e^(−xt)  sint)/(1−e^(−xt) ))dt= ∫_0 ^∞ ( Σ_(n=0) ^∞ e^(−nxt) )e^(−xt) sintdt  = Σ_(n=0) ^∞    ∫_0 ^∞  e^(−(n+1)xt) sint dt=Σ_(n=0) ^∞  A_n (x)   A_n (x)= ∫_0 ^∞  e^(−(n+1)xt) sint dt=−Im( ∫_0 ^∞  e^(−((n+1)x +i)t) dt)but  ∫_0 ^∞   e^(−((n+1)x+i)t) dt =−(1/((n+1)x+i))[  e^(−((n+1)x+i)t) ]_0 ^(+∞)   = (1/((n+1)x+i))=(((n+1)x−i)/((n+1)^2 x^2 +1))=(((n+1)x)/(1+(n+1)^2 x^2 ))−(i/(1+(n+1)^2 x^2 ))  A_n (x)= (1/(1+(n+1)^2 x^2 )) ⇒S(x)= Σ_(n=0) ^∞   (1/(1+(n+1)^2 x^2 ))  with x>0

$${S}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{xt}} \:{sint}}{\mathrm{1}−{e}^{−{xt}} }{dt}=\:\int_{\mathrm{0}} ^{\infty} \left(\:\sum_{{n}=\mathrm{0}} ^{\infty} {e}^{−{nxt}} \right){e}^{−{xt}} {sintdt} \\ $$ $$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({n}+\mathrm{1}\right){xt}} {sint}\:{dt}=\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} \left({x}\right)\: \\ $$ $${A}_{{n}} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({n}+\mathrm{1}\right){xt}} {sint}\:{dt}=−{Im}\left(\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\left({n}+\mathrm{1}\right){x}\:+{i}\right){t}} {dt}\right){but} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\left({n}+\mathrm{1}\right){x}+{i}\right){t}} {dt}\:=−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){x}+{i}}\left[\:\:{e}^{−\left(\left({n}+\mathrm{1}\right){x}+{i}\right){t}} \right]_{\mathrm{0}} ^{+\infty} \\ $$ $$=\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right){x}+{i}}=\frac{\left({n}+\mathrm{1}\right){x}−{i}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{1}}=\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{1}+\left({n}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}} }−\frac{{i}}{\mathrm{1}+\left({n}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}} } \\ $$ $${A}_{{n}} \left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+\left({n}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}} }\:\Rightarrow{S}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{1}+\left({n}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}} }\:\:{with}\:{x}>\mathrm{0} \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com