Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 28614 by abdo imad last updated on 27/Jan/18

find  Σ_(n=1) ^∞   ((sin(nx))/n).

$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({nx}\right)}{{n}}. \\ $$$$ \\ $$

Commented by abdo imad last updated on 30/Jan/18

let developp the function f(x)=(x/2)periodic by 2π and odd  f(x) = Σ_(n=1) ^∞ a_n sin(nx) and a_n = (2/(2π)) ∫_([T])  (x/2) sin(nx)dx  =(1/π) ∫_0 ^π  x sin(nx)dx and by parts  π a_n =((−x)/n)cos(nx)]_0 ^π  − ∫_0 ^π ((−1)/n)cos(nx)dx  =((−π)/n)(−1)^n   +(1/n^2 )[sin(nx)]_0 ^π  = ((π(−1)^(n−1) )/n)  so  a_n =(((−1)^(n−1) )/n)  and   (x/2)= Σ_(n=1) ^∞   (((−1)^(n−1) )/n) sin(nx)  let do thech.=π−t so  ((π−t)/2)=Σ_(n=1) ^∞ (((−1)^(n−1) )/n)sin(nπ−nt)  but  sin(nπ−nt)=sin(nπ)cos(nt)−cos(nπ)sin(nt)  =(−1)^(n−1) sin(nt)⇒ ((π−t)/2) =Σ_(n=1) ^∞   ((sin(nt))/n) finally we have  Σ_(n=1) ^∞   ((sin(nx))/n) = ((π−x)/2)  .

$${let}\:{developp}\:{the}\:{function}\:{f}\left({x}\right)=\frac{{x}}{\mathrm{2}}{periodic}\:{by}\:\mathrm{2}\pi\:{and}\:{odd} \\ $$$${f}\left({x}\right)\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} {a}_{{n}} {sin}\left({nx}\right)\:{and}\:{a}_{{n}} =\:\frac{\mathrm{2}}{\mathrm{2}\pi}\:\int_{\left[{T}\right]} \:\frac{{x}}{\mathrm{2}}\:{sin}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{x}\:{sin}\left({nx}\right){dx}\:{and}\:{by}\:{parts} \\ $$$$\left.\pi\:{a}_{{n}} =\frac{−{x}}{{n}}{cos}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:−\:\int_{\mathrm{0}} ^{\pi} \frac{−\mathrm{1}}{{n}}{cos}\left({nx}\right){dx} \\ $$$$=\frac{−\pi}{{n}}\left(−\mathrm{1}\right)^{{n}} \:\:+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left[{sin}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:=\:\frac{\pi\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:\:{so} \\ $$$${a}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:\:{and}\: \\ $$$$\frac{{x}}{\mathrm{2}}=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{sin}\left({nx}\right)\:\:{let}\:{do}\:{thech}.=\pi−{t}\:{so} \\ $$$$\frac{\pi−{t}}{\mathrm{2}}=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}{sin}\left({n}\pi−{nt}\right)\:\:{but} \\ $$$${sin}\left({n}\pi−{nt}\right)={sin}\left({n}\pi\right){cos}\left({nt}\right)−{cos}\left({n}\pi\right){sin}\left({nt}\right) \\ $$$$=\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {sin}\left({nt}\right)\Rightarrow\:\frac{\pi−{t}}{\mathrm{2}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({nt}\right)}{{n}}\:{finally}\:{we}\:{have} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({nx}\right)}{{n}}\:=\:\frac{\pi−{x}}{\mathrm{2}}\:\:. \\ $$$$ \\ $$

Commented by abdo imad last updated on 30/Jan/18

the convergence of this serie is assured by Abel Dirichlet  theorem let remember this theorem.if Σ a_n (x)v_n (x)is a   serie of function  (  a_n >0 and v_n >0)/ a_(n ) decrease and a_n (x)_(n→∞) →0  and∃ m>0 / ∣Σ_(k=n_0 ) ^n  v_k (x)∣≤m so the serie converges.

$${the}\:{convergence}\:{of}\:{this}\:{serie}\:{is}\:{assured}\:{by}\:{Abel}\:{Dirichlet} \\ $$$${theorem}\:{let}\:{remember}\:{this}\:{theorem}.{if}\:\Sigma\:{a}_{{n}} \left({x}\right){v}_{{n}} \left({x}\right){is}\:{a}\: \\ $$$${serie}\:{of}\:{function}\:\:\left(\:\:{a}_{{n}} >\mathrm{0}\:{and}\:{v}_{{n}} >\mathrm{0}\right)/\:{a}_{{n}\:} {decrease}\:{and}\:{a}_{{n}} \left({x}\right)_{{n}\rightarrow\infty} \rightarrow\mathrm{0} \\ $$$${and}\exists\:{m}>\mathrm{0}\:/\:\mid\sum_{{k}={n}_{\mathrm{0}} } ^{{n}} \:{v}_{{k}} \left({x}\right)\mid\leqslant{m}\:{so}\:{the}\:{serie}\:{converges}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com