Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28677 by abdo imad last updated on 28/Jan/18

find   ∫_0 ^1   ((lnx)/(x−1))dx

$${find}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{lnx}}{{x}−\mathrm{1}}{dx} \\ $$

Commented by abdo imad last updated on 29/Jan/18

let put  I= ∫_0 ^1   ((lnx)/(x−1))dx  I=−∫_0 ^1   ((lnx)/(1−x))dx=− ∫_0 ^1  (Σ_(n=0) ^(+∞)  x^n )lnx dx  =− Σ_(n=0) ^(+∞)   ∫_0 ^1   x^n lnxdx  let integrate by parts  ∫^1 _0  x^n lnxdx= [ (1/(n+1))x^(n+1) lnx]_(x→0) ^(x=1)    − ∫_0 ^1   (1/(n+1)) x^(n+1)  (dx/x)  =−(1/(n+1)) ∫_0 ^1  x^n dx= −(1/((n+1)^2 ))  I= Σ_(n=0) ^(+∞)     (1/((n+1)^2 ))= Σ_(n=1) ^(+∞)    (1/n^2 )= (π^2 /6)  .

$${let}\:{put}\:\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{lnx}}{{x}−\mathrm{1}}{dx} \\ $$$${I}=−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{lnx}}{\mathrm{1}−{x}}{dx}=−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sum_{{n}=\mathrm{0}} ^{+\infty} \:{x}^{{n}} \right){lnx}\:{dx} \\ $$$$=−\:\sum_{{n}=\mathrm{0}} ^{+\infty} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{n}} {lnxdx}\:\:{let}\:{integrate}\:{by}\:{parts} \\ $$$$\underset{\mathrm{0}} {\int}^{\mathrm{1}} \:{x}^{{n}} {lnxdx}=\:\left[\:\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} {lnx}\right]_{{x}\rightarrow\mathrm{0}} ^{{x}=\mathrm{1}} \:\:\:−\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:{x}^{{n}+\mathrm{1}} \:\frac{{dx}}{{x}} \\ $$$$=−\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} {dx}=\:−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${I}=\:\sum_{{n}=\mathrm{0}} ^{+\infty} \:\:\:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }=\:\sum_{{n}=\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:.\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com