Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28679 by abdo imad last updated on 28/Jan/18

f function contnue on [0,1] .prove that  lim_(n→+∞)   n∫_0 ^1   t^n f(t)dt=f(1).

$${f}\:{function}\:{contnue}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\:.{prove}\:{that} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{n}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}^{{n}} {f}\left({t}\right){dt}={f}\left(\mathrm{1}\right). \\ $$

Commented by abdo imad last updated on 29/Jan/18

let put t^n =x ⇔t= x^(1/n)   and  I_n = n ∫_0 ^1  x f(x^(1/n) )(1/n) x^((1/n)−1) dx  = ∫_0 ^1   x^(1/n)  f(x^(1/n) )dx = ∫_0 ^1   ψ_n (x)dx with  ψ_n (x)= x^(1/n)   f( x^(1/n) )  ψ_(nn→+∞)   →^(c.s.)  f(1)  so  ∫_0 ^1  ψ_n (x)dx_(n→+∞) → ∫_0 ^1 f(1)dx=f(1).

$${let}\:{put}\:{t}^{{n}} ={x}\:\Leftrightarrow{t}=\:{x}^{\frac{\mathrm{1}}{{n}}} \:\:{and}\:\:{I}_{{n}} =\:{n}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\:{f}\left({x}^{\frac{\mathrm{1}}{{n}}} \right)\frac{\mathrm{1}}{{n}}\:{x}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} {dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{\frac{\mathrm{1}}{{n}}} \:{f}\left({x}^{\frac{\mathrm{1}}{{n}}} \right){dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\psi_{{n}} \left({x}\right){dx}\:{with} \\ $$$$\psi_{{n}} \left({x}\right)=\:{x}^{\frac{\mathrm{1}}{{n}}} \:\:{f}\left(\:{x}^{\frac{\mathrm{1}}{{n}}} \right)\:\:\psi_{{nn}\rightarrow+\infty} \:\:\rightarrow^{{c}.{s}.} \:{f}\left(\mathrm{1}\right)\:\:{so} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\psi_{{n}} \left({x}\right){dx}_{{n}\rightarrow+\infty} \rightarrow\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left(\mathrm{1}\right){dx}={f}\left(\mathrm{1}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com