Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28683 by abdo imad last updated on 28/Jan/18

developp f(x)=e^(−αx)    2π periodic at Fourier serie with  α>0.

$${developp}\:{f}\left({x}\right)={e}^{−\alpha{x}} \:\:\:\mathrm{2}\pi\:{periodic}\:{at}\:{Fourier}\:{serie}\:{with} \\ $$ $$\alpha>\mathrm{0}. \\ $$

Commented byabdo imad last updated on 31/Jan/18

f(x)=Σ_(n=−∞) ^(+∞)  c_n  e^(inx)   and c_n = (1/T) ∫_([T])  f(x) e^(−inx) dx  =(1/(2π)) ∫_(−π) ^π  e^(−αx)  e^(−inx) dx ⇒2π c_n = ∫_(−π) ^π  e^(−(α+in)x) dx  =((−1)/(α+in)) [ e^(−(α+in)x)  ]_(−π) ^π  =((−1)/(α+in)) (  e^(−(α+in)π)  −e^((𝛂+in)π) )  =((−1)/(α+in))( (−1)^n  e^(−απ)  −(−1)^n  e^(απ) ) = (((−1)^n )/(α+in))(e^(απ)  −e^(−απ) )  =((2(−1)^n )/(α+in)) sh(απ) ⇒  c_n = ((sh(απ))/π) (((−1)^n )/(α +in)) so  f(x)=  Σ_(n=−∞) ^(+∞)   ((sh(απ))/π) (((−1)^n )/(α+in)) e^(inx)   .

$${f}\left({x}\right)=\sum_{{n}=−\infty} ^{+\infty} \:{c}_{{n}} \:{e}^{{inx}} \:\:{and}\:{c}_{{n}} =\:\frac{\mathrm{1}}{{T}}\:\int_{\left[{T}\right]} \:{f}\left({x}\right)\:{e}^{−{inx}} {dx} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int_{−\pi} ^{\pi} \:{e}^{−\alpha{x}} \:{e}^{−{inx}} {dx}\:\Rightarrow\mathrm{2}\pi\:{c}_{{n}} =\:\int_{−\pi} ^{\pi} \:{e}^{−\left(\alpha+{in}\right){x}} {dx} \\ $$ $$=\frac{−\mathrm{1}}{\alpha+{in}}\:\left[\:{e}^{−\left(\alpha+{in}\right){x}} \:\right]_{−\pi} ^{\pi} \:=\frac{−\mathrm{1}}{\alpha+{in}}\:\left(\:\:{e}^{−\left(\alpha+{in}\right)\pi} \:−\boldsymbol{{e}}^{\left(\boldsymbol{\alpha}+{in}\right)\pi} \right) \\ $$ $$=\frac{−\mathrm{1}}{\alpha+{in}}\left(\:\left(−\mathrm{1}\right)^{{n}} \:{e}^{−\alpha\pi} \:−\left(−\mathrm{1}\right)^{{n}} \:{e}^{\alpha\pi} \right)\:=\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\alpha+{in}}\left({e}^{\alpha\pi} \:−{e}^{−\alpha\pi} \right) \\ $$ $$=\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{n}} }{\alpha+{in}}\:{sh}\left(\alpha\pi\right)\:\Rightarrow\:\:{c}_{{n}} =\:\frac{{sh}\left(\alpha\pi\right)}{\pi}\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\alpha\:+{in}}\:{so} \\ $$ $${f}\left({x}\right)=\:\:\sum_{{n}=−\infty} ^{+\infty} \:\:\frac{{sh}\left(\alpha\pi\right)}{\pi}\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\alpha+{in}}\:{e}^{{inx}} \:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com