All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28701 by students last updated on 29/Jan/18
integrationx3x2+x+1
Commented by abdo imad last updated on 29/Jan/18
∫x3x2+x+1dx=∫x3−1+1x2+x+1dx=∫(x−1)dx++∫dxx2+x+1=x22−x+∫dxx2+x+1butI=∫dxx2+x+1=∫dx(x+12)2+34letusethech.x+12=32tI=∫134t2+3432dt=3243∫dt1+t2=233arctant=233arctan(23(x+12))so∫x3x2+x+1dx=x22−x+233arctan(23(x+12)).
∫(...)dx=........+λ.
Answered by mrW2 last updated on 29/Jan/18
=x3+x2+x−x2−x−1+1x2+x+1=x−1+1x2+x+1=x−1+1(x+12)2+(32)2∫x3x2+x+1dx=x22−x+23tan−1x+1232+C=x22−x+23tan−12x+13+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com