Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28706 by students last updated on 29/Jan/18

most important question gor boar or iit   solve the integration  (1/(3sinx+4cosx))

$${most}\:{important}\:{question}\:{gor}\:{boar}\:{or}\:{iit}\: \\ $$$${solve}\:{the}\:{integration}\:\:\frac{\mathrm{1}}{\mathrm{3}{sinx}+\mathrm{4}{cosx}} \\ $$

Commented by abdo imad last updated on 29/Jan/18

let put I= ∫  (dx/(3sinx+4cosx)) and use the ch. tan((x/2))=t  I= ∫    (1/(((6t)/(1+t^2 )) +4((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))= ∫  ((2dt)/(6t +4−4t^2 ))  = ∫  (dt/(−2t^2 +3t +2))=−∫  (dt/(2t^2 −3t−2)) let find the roots of  F(t)=  (1/(2t^2 −3t−2))   Δ= 9 −4(−4)=25⇒t_1 =((3+5)/4)=2  t_2 =((3−5)/4)=((−1)/2) so F(t)= (1/(2(t−2)(t+(1/2))))=(a/(t−2)) +(b/(t+(1/2)))  a=lim_(t→2) (t−2)F(t)= (1/(2(2+(1/2))))= (1/5)  b=lim_(t→−(1/2)) (t+(1/2))F(t)=  (1/(2(−(1/2)−2)))=−(1/5)  F(t)=(1/5)(  (1/(t−2)) − (1/(t+(1/2))))  ∫F(t)dt= (1/5)ln∣((t−2)/(t+(1/2)))∣+λ     and  I=−(1/5)ln∣((t−2)/(t+(1/2)))∣ +λ= −(1/5)ln∣((tan((x/2))−2)/(tan((x/2))+(1/2)))∣ +λ

$${let}\:{put}\:{I}=\:\int\:\:\frac{{dx}}{\mathrm{3}{sinx}+\mathrm{4}{cosx}}\:{and}\:{use}\:{the}\:{ch}.\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t} \\ $$$${I}=\:\int\:\:\:\:\frac{\mathrm{1}}{\frac{\mathrm{6}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:+\mathrm{4}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }=\:\int\:\:\frac{\mathrm{2}{dt}}{\mathrm{6}{t}\:+\mathrm{4}−\mathrm{4}{t}^{\mathrm{2}} } \\ $$$$=\:\int\:\:\frac{{dt}}{−\mathrm{2}{t}^{\mathrm{2}} +\mathrm{3}{t}\:+\mathrm{2}}=−\int\:\:\frac{{dt}}{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{2}}\:{let}\:{find}\:{the}\:{roots}\:{of} \\ $$$${F}\left({t}\right)=\:\:\frac{\mathrm{1}}{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{2}}\:\:\:\Delta=\:\mathrm{9}\:−\mathrm{4}\left(−\mathrm{4}\right)=\mathrm{25}\Rightarrow{t}_{\mathrm{1}} =\frac{\mathrm{3}+\mathrm{5}}{\mathrm{4}}=\mathrm{2} \\ $$$${t}_{\mathrm{2}} =\frac{\mathrm{3}−\mathrm{5}}{\mathrm{4}}=\frac{−\mathrm{1}}{\mathrm{2}}\:{so}\:{F}\left({t}\right)=\:\frac{\mathrm{1}}{\mathrm{2}\left({t}−\mathrm{2}\right)\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)}=\frac{{a}}{{t}−\mathrm{2}}\:+\frac{{b}}{{t}+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${a}={lim}_{{t}\rightarrow\mathrm{2}} \left({t}−\mathrm{2}\right){F}\left({t}\right)=\:\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}\right)}=\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${b}={lim}_{{t}\rightarrow−\frac{\mathrm{1}}{\mathrm{2}}} \left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right){F}\left({t}\right)=\:\:\frac{\mathrm{1}}{\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\right)}=−\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${F}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{5}}\left(\:\:\frac{\mathrm{1}}{{t}−\mathrm{2}}\:−\:\frac{\mathrm{1}}{{t}+\frac{\mathrm{1}}{\mathrm{2}}}\right) \\ $$$$\int{F}\left({t}\right){dt}=\:\frac{\mathrm{1}}{\mathrm{5}}{ln}\mid\frac{{t}−\mathrm{2}}{{t}+\frac{\mathrm{1}}{\mathrm{2}}}\mid+\lambda\:\:\:\:\:{and} \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{5}}{ln}\mid\frac{{t}−\mathrm{2}}{{t}+\frac{\mathrm{1}}{\mathrm{2}}}\mid\:+\lambda=\:−\frac{\mathrm{1}}{\mathrm{5}}{ln}\mid\frac{{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{2}}{{tan}\left(\frac{{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}}\mid\:+\lambda \\ $$

Commented by students last updated on 29/Jan/18

sir i am confused please sir solve the question other method

$${sir}\:{i}\:{am}\:{confused}\:{please}\:{sir}\:{solve}\:{the}\:{question}\:{other}\:{method} \\ $$

Commented by Tinkutara last updated on 29/Jan/18

This is a similar question. Just ignore the limits and change the values.

Commented by Tinkutara last updated on 29/Jan/18

Commented by Tinkutara last updated on 29/Jan/18

Commented by students last updated on 29/Jan/18

thank u sir

$${thank}\:{u}\:{sir} \\ $$

Commented by abdo imad last updated on 29/Jan/18

i have another method with residus theorem but its  more difficult than this and its better for you to look the  solution given by sir tinkutara  it s the same without  borns...

$${i}\:{have}\:{another}\:{method}\:{with}\:{residus}\:{theorem}\:{but}\:{its} \\ $$$${more}\:{difficult}\:{than}\:{this}\:{and}\:{its}\:{better}\:{for}\:{you}\:{to}\:{look}\:{the} \\ $$$${solution}\:{given}\:{by}\:{sir}\:{tinkutara}\:\:{it}\:{s}\:{the}\:{same}\:{without} \\ $$$${borns}... \\ $$

Answered by ajfour last updated on 29/Jan/18

∫(dx/(3sin x+4cos x))=∫(dx/(5sin (x+α)))  where cos α=(3/5),   sin α=(4/5)  =(1/5)∫cosec (x+α)dx  =(1/5)ln ∣cosec (x+α)−cot (x+α)∣+c  =(1/5)ln ∣((5−3cos x+4sin x)/(3sin x+4cos x))∣+c

$$\int\frac{{dx}}{\mathrm{3sin}\:{x}+\mathrm{4cos}\:{x}}=\int\frac{{dx}}{\mathrm{5sin}\:\left({x}+\alpha\right)} \\ $$$${where}\:\mathrm{cos}\:\alpha=\frac{\mathrm{3}}{\mathrm{5}},\:\:\:\mathrm{sin}\:\alpha=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}\int\mathrm{cosec}\:\left({x}+\alpha\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln}\:\mid\mathrm{cosec}\:\left({x}+\alpha\right)−\mathrm{cot}\:\left({x}+\alpha\right)\mid+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}}\mathrm{ln}\:\mid\frac{\mathrm{5}−\mathrm{3cos}\:{x}+\mathrm{4sin}\:{x}}{\mathrm{3sin}\:{x}+\mathrm{4cos}\:{x}}\mid+{c}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com