All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28756 by abdo imad last updated on 29/Jan/18
findintermsofλ∫0∞e−λtsinttdtwithλ>0
Commented byabdo imad last updated on 30/Jan/18
letputI=∫0∞e−λtsinttdtwithλ>0thech.t=xgive I=∫0∞e−λx2sin(x2)x2xdx=2∫0∞e−λx2sin(x2)dx =∫−∞+∞e−λx2sin(x2)dx=−Im(∫−∞+∞e−λx2−ix2dx)but ∫−∞+∞e−λx2−ix2dx=∫−∞+∞e−(λ+i)x2dx=∫−∞+∞e−(λ+ix)2dx =∫−∞+∞e−u2duλ+i(ch.λ+ix=u) =(λ+i)−12.πwehave λ+i=1+λ2(λ1+λ2+i1+λ2)=reiθ⇒r=1+λ2 andcosθ=λ1+λ2andsinθ=11+λ2⇒tanθ=1λ ⇒θ=arctan(1λ)soλ+i=(1+λ2)12eiarctan(1λ) λ+i=(1+λ2)12ei(π2−arctanλ) ⇒(λ+i)−12=(1+λ2)−14ei(−π4+arctanλ2) =(1+λ2)−14(cos(−π4+arctanλ2)+isin(−π4+arctanλ2)) I=−Im(π(λ+i)−12)=−πsin(−π4+artanλ2) =πsin(π4−arctanλ2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com