Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28756 by abdo imad last updated on 29/Jan/18

find in terms of λ ∫_0 ^∞   e^(−λt)  ((sint)/(√t)) dt  with  λ>0

findintermsofλ0eλtsinttdtwithλ>0

Commented byabdo imad last updated on 30/Jan/18

let put I= ∫_0 ^∞  e^(−λt)   ((sint)/(√t))dt   with  λ>0 the ch.(√t) =x give  I= ∫_0 ^∞   e^(−λx^2   ) ((sin(x^2 ))/x) 2xdx =2∫_0 ^∞  e^(−λx^2 )  sin(x^2 )dx  = ∫_(−∞) ^(+∞)  e^(−λx^2 )  sin(x^2 )dx=− Im (∫_(−∞) ^(+∞)   e^(−λx^2  −ix^2 ) dx) but  ∫_(−∞) ^(+∞)   e^(−λx^2  −ix^2 ) dx = ∫_(−∞) ^(+∞)   e^(−(λ+i)x^2 ) dx= ∫_(−∞) ^(+∞)  e^(−((√(λ+i))x)^2 )  dx     = ∫_(−∞ ) ^(+∞)   e^(−u^2 )   (du/(√(λ+i)))        (ch.(√(λ+i)) x=u)  =(λ +i)^(−(1/2)) .(√π)         we have  λ+i= (√(1+λ^2 )) (  (λ/(√(1+λ^2  )))  +(i/(√(1+λ^2 ))) ) =r e^(iθ)  ⇒r=(√(1+λ^2 ))  and cosθ= (λ/(√(1+λ^2  )))    and sinθ= (1/((√(1+λ^2 )) ))  ⇒tanθ=(1/λ)  ⇒θ= arctan((1/λ)) so λ+i=(1+λ^2 )^(1/2)  e^(iarctan((1/λ)))   λ+i= (1+λ^2 )^(1/2)  e^(i((π/2) −arctanλ))   ⇒ (λ+i)^(−(1/2))  =(1+λ^2 )^(−(1/4))  e^(i( ((−π)/4) +((arctanλ)/2)))   =(1+λ^2 )^(−(1/4))  (cos( ((−π)/4) +((arctanλ)/2)) +isin(((−π)/4)+((arctanλ)/2)))  I=−Im((√π)(λ+i)^(−(1/2)) )=−(√π)sin(((−π)/4) +((artanλ)/2))  =(√π) sin((π/4) −((arctanλ)/2)) .

letputI=0eλtsinttdtwithλ>0thech.t=xgive I=0eλx2sin(x2)x2xdx=20eλx2sin(x2)dx =+eλx2sin(x2)dx=Im(+eλx2ix2dx)but +eλx2ix2dx=+e(λ+i)x2dx=+e(λ+ix)2dx =+eu2duλ+i(ch.λ+ix=u) =(λ+i)12.πwehave λ+i=1+λ2(λ1+λ2+i1+λ2)=reiθr=1+λ2 andcosθ=λ1+λ2andsinθ=11+λ2tanθ=1λ θ=arctan(1λ)soλ+i=(1+λ2)12eiarctan(1λ) λ+i=(1+λ2)12ei(π2arctanλ) (λ+i)12=(1+λ2)14ei(π4+arctanλ2) =(1+λ2)14(cos(π4+arctanλ2)+isin(π4+arctanλ2)) I=Im(π(λ+i)12)=πsin(π4+artanλ2) =πsin(π4arctanλ2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com