All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28811 by abdo imad last updated on 30/Jan/18
find∫0∞ln(1+e−xt)dxwitht>0thengivethevalueof ∫0∞ln(1+e−x)dx.
Commented byabdo imad last updated on 01/Feb/18
wehavefor∣u∣<1ddu(ln(1+u))=11+u=∑n=0∞(−1)nun⇒ ln(1+u)=∑n=0∞(−1)nn+1un+1+k(k=ln(1)=0)so ln(1+u)=∑n=1∞(−1)n−1nunand ∫0∞ln(1+e−xt)dx=∫0∞(∑n=1∞(−1)n−1ne−nxt)dx =∑n=1∞(−1)n−1n∫0∞e−ntxdx=∑n=1∞(−1)n−1nAn An=∫0∞e−ntxdx=−1nt[e−ntx]x=0∞=1ntso ∫0∞ln(1+e−xt)dx=1t∑n=1∞(−1)n−1n2=−1tδ(2) δ(x)=∑n=1∞(−1)nnxwehaveprovedthat δ(x)=(21−x−1)ξ(x)⇒δ(2)=(12−1)ξ(2)=−12π26 =−π212and∫0∞ln(1+e−xt)dx=π212tlettaket=1 ∫0∞ln(1+e−x)dx=π212.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com