All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 28814 by abdo imad last updated on 30/Jan/18
find∑n=1∞113+23+...+n3.
Commented by abdo imad last updated on 01/Feb/18
letputSn=∑k=1n113+23+....+k3andS=∑n=1∞113+23+...+n3=limn→+∞Snweknowthat13+23+....k3=(k(k+1)2)2=k2(k+1)24soSn=4∑k=1n1k2(k+1)2letdecomposeF(x)=1x2(x+1)2F(x)=ax+bx2+cx+1+d(x+1)2b=limx→0x2f(x)=1,d=limx→−1(x+1)2F(x)=1soF(x)=ax+1x2+cx+1+1(x+1)2limx→+∞xF(x)=0=a+c⇒c=−asoF(x)=ax−ax+1+1x2+1(x+1)2F(1)=14=a−a2++1+14⇒a2+1=0⇒a=−2soF(x)=−2x+2x+1+1x2+1(x+1)2∑k=1nF(k)=−2∑k=1n1k+2∑k=1n1k+1+∑k=1n1k2+∑k=1n1(k+1)2but∑k=1n1k=Hn∑k=1n1k+1=∑k=2n+11k=Hn+1−1∑k=1n1k2=ξn(2)withξn(x)=∑k=1n1kx.∑k=1n1(k+1)2=∑k=2n+11k2=ξn+1(2)−1∑k=1nF(k)=−2Hn+2Hn+1−2+ξn(2)+ξn+1(2)−1=2(Hn+1−Hn)+ξn(2)+ξn+1(2)−1→0+π26+π26−1=π23−1andlimn→+∞Sn=4(π23−1)=S.
∑k=1nF(k)=2(Hn+1−Hn)+ξn(2)+ξn+1(2)−3→0+2π26−3=π23−3andlimn→+∞Sn=4(π23−3)=4π23−12.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com