Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 28814 by abdo imad last updated on 30/Jan/18

find Σ_(n=1) ^∞     (1/(1^3  +2^3 +...+n^3 )) .

findn=1113+23+...+n3.

Commented by abdo imad last updated on 01/Feb/18

let put   S_n = Σ_(k=1) ^n    (1/(1^3  +2^3 +....+k^3 ))   and S=Σ_(n=1) ^∞  (1/(1^3  +2^3 +...+n^3 )) =lim_(n→+∞)  S_n   we know that  1^(3 )  +2^3  +....k^3 = (((k(k+1))/2))^2 = ((k^2 (k+1)^2 )/4)  so  S_n = 4 Σ_(k=1) ^n   (1/(k^2 (k+1)^2 )) let decompose F(x)= (1/(x^2 (x+1)^2 ))  F(x)= (a/x) +(b/x^2 ) +(c/(x+1)) +(d/((x+1)^2 ))  b=lim_(x→0) x^2 f(x)= 1  , d=lim_(x→−1) (x+1)^2 F(x)= 1 so  F(x)= (a/x) +(1/x^2 ) +(c/(x+1)) + (1/((x+1)^2 ))  lim _(x→+∞)  xF(x)= 0= a+c ⇒c=−a so  F(x)= (a/x) −(a/(x+1)) + (1/x^2 ) + (1/((x+1)^2 ))  F(1)= (1/4)=a −(a/2) + +1 +(1/4)⇒(a/2) +1=0 ⇒a=−2 so  F(x)= ((−2)/x) +(2/(x+1)) + (1/x^2 ) + (1/((x+1)^2 ))  Σ_(k=1) ^n  F(k)= −2Σ_(k=1) ^n   (1/k) + 2 Σ_(k=1) ^n   (1/(k+1)) + Σ_(k=1) ^n  (1/k^2 )   +Σ_(k=1) ^n   (1/((k+1)^2 ))  but  Σ_(k=1) ^n  (1/k)=H_n   Σ_(k=1) ^n  (1/(k+1))= Σ_(k=2) ^(n+1)   (1/k)= H_(n+1) −1    Σ_(k=1) ^n  (1/k^2 ) = ξ_n (2)    with ξ_n (x)=Σ_(k=1) ^n    (1/k^x ) .  Σ_(k=1) ^n  (1/((k+1)^2 )) = Σ_(k=2) ^(n+1)    (1/k^2 )= ξ_(n+1) (2)−1  Σ_(k=1) ^n  F(k)= −2H_n  +2H_(n+1) −2 +ξ_n (2) +ξ_(n+1) (2)−1  =2(H_(n+1) −H_n ) +ξ_n (2) +ξ_(n+1) (2)−1  →0 +(π^2 /6) +(π^2 /6)−1= (π^2 /3) −1  and lim_(n→+∞)  S_n =4( (π^2 /3)−1)=S .

letputSn=k=1n113+23+....+k3andS=n=1113+23+...+n3=limn+Snweknowthat13+23+....k3=(k(k+1)2)2=k2(k+1)24soSn=4k=1n1k2(k+1)2letdecomposeF(x)=1x2(x+1)2F(x)=ax+bx2+cx+1+d(x+1)2b=limx0x2f(x)=1,d=limx1(x+1)2F(x)=1soF(x)=ax+1x2+cx+1+1(x+1)2limx+xF(x)=0=a+cc=asoF(x)=axax+1+1x2+1(x+1)2F(1)=14=aa2++1+14a2+1=0a=2soF(x)=2x+2x+1+1x2+1(x+1)2k=1nF(k)=2k=1n1k+2k=1n1k+1+k=1n1k2+k=1n1(k+1)2butk=1n1k=Hnk=1n1k+1=k=2n+11k=Hn+11k=1n1k2=ξn(2)withξn(x)=k=1n1kx.k=1n1(k+1)2=k=2n+11k2=ξn+1(2)1k=1nF(k)=2Hn+2Hn+12+ξn(2)+ξn+1(2)1=2(Hn+1Hn)+ξn(2)+ξn+1(2)10+π26+π261=π231andlimn+Sn=4(π231)=S.

Commented by abdo imad last updated on 01/Feb/18

Σ_(k=1) ^n F(k)= 2(H_(n+1) −H_n ) +ξ_n (2) +ξ_(n+1) (2)−3  →0 +((2π^2 )/6) −3= (π^2 /3)−3    and  lim_(n→+∞)  S_n =4( (π^2 /3) −3) = ((4π^2 )/3) −12.

k=1nF(k)=2(Hn+1Hn)+ξn(2)+ξn+1(2)30+2π263=π233andlimn+Sn=4(π233)=4π2312.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com