Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28815 by abdo imad last updated on 30/Jan/18

find the value of   ∫_0 ^π     (dx/(2cos^2 x +sin^2 x)) .

$${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{2}{cos}^{\mathrm{2}} {x}\:+{sin}^{\mathrm{2}} {x}}\:. \\ $$

Answered by mrW2 last updated on 31/Jan/18

∫_0 ^π     (dx/(2cos^2 x +sin^2 x))   =∫_0 ^π     (dx/(1+cos^2 x))   =2∫_0 ^π     (dx/(3+2cos^2 x−1))   =2∫_0 ^π     (dx/(3+cos 2x))   =2×2[((tan^(−1) (((tan x)/(√2))))/(2(√2)))]_0 ^(π/2)   =(π/(√2))

$$\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{2}{cos}^{\mathrm{2}} {x}\:+{sin}^{\mathrm{2}} {x}}\: \\ $$$$=\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+{cos}^{\mathrm{2}} {x}}\: \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{3}+\mathrm{2}{cos}^{\mathrm{2}} {x}−\mathrm{1}}\: \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{3}+\mathrm{cos}\:\mathrm{2}{x}}\: \\ $$$$=\mathrm{2}×\mathrm{2}\left[\frac{\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\:{x}}{\sqrt{\mathrm{2}}}\right)}{\mathrm{2}\sqrt{\mathrm{2}}}\right]_{\mathrm{0}} ^{\pi/\mathrm{2}} \\ $$$$=\frac{\pi}{\sqrt{\mathrm{2}}} \\ $$

Commented by abdo imad last updated on 31/Jan/18

another metod by redidus theorem we have  I = ∫_0 ^π     (dx/(1+cos^2 x))= ∫_0 ^π    (dx/(1+((1+cos(2x))/2)))=∫_0 ^π  ((2dx)/(3+cos(2x)))  the ch. 2x=t   give  I=  ∫_0 ^(2π)    (dt/(3+cost))  and the ch. e^(it) =z give  I= ∫_(∣z∣=1)    (1/(3+ ((z+z^(−1) )/2))) (dz/(iz))= ∫_(∣z∣=1)    ((2dz)/(iz( 6+z+z^(−1) )))  =  ∫_(∣z∣)    ((−2i)/(6z +z^2 +1))= ∫_(∣z∣=1)   ((−2i)/(z^2  +6z +1))dz let put  f(z)= ((−2i)/(z^2  +6z +1))  , poles of f?  z^2 +6z+1=0⇒Δ=36−4= 32  ⇒z_1 =((−6 +4(√2))/2)=−3+2(√2)  z_2 = −3−2(√2) we have ∣z_1 ∣−1=2(√2)−3−1=2((√2)−2)<0  and ∣z_2 ∣−1=3+2(√2)−1=2+2(√2) >1 (to eliminate because  out of circle)  ∫_(∣z∣=1) f(z)dx=2iπ Re(f ,z_1 ) but f(z)= ((−2i)/((z−z_1 )(z−z_2 )))  Res(f,z_1 )=lim_(z→z_1 ) (z−z_1 )f(z)= ((−2i)/(z_1 −z_2 ))= ((−2i)/(4(√2)))  ∫_(∣z∣=1) f(z)dx= 2iπ.((−i)/(2(√2)))= (π/(√2)) so I= (π/(√2))  .

$${another}\:{metod}\:{by}\:{redidus}\:{theorem}\:{we}\:{have} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{1}+{cos}^{\mathrm{2}} {x}}=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\mathrm{1}+\frac{\mathrm{1}+{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}}=\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{2}{dx}}{\mathrm{3}+{cos}\left(\mathrm{2}{x}\right)} \\ $$$${the}\:{ch}.\:\mathrm{2}{x}={t}\:\:\:{give}\:\:{I}=\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{dt}}{\mathrm{3}+{cost}}\:\:{and}\:{the}\:{ch}.\:{e}^{{it}} ={z}\:{give} \\ $$$${I}=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{\mathrm{1}}{\mathrm{3}+\:\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}}\:\frac{{dz}}{{iz}}=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{\mathrm{2}{dz}}{{iz}\left(\:\mathrm{6}+{z}+{z}^{−\mathrm{1}} \right)} \\ $$$$=\:\:\int_{\mid{z}\mid} \:\:\:\frac{−\mathrm{2}{i}}{\mathrm{6}{z}\:+{z}^{\mathrm{2}} +\mathrm{1}}=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\frac{−\mathrm{2}{i}}{{z}^{\mathrm{2}} \:+\mathrm{6}{z}\:+\mathrm{1}}{dz}\:{let}\:{put} \\ $$$${f}\left({z}\right)=\:\frac{−\mathrm{2}{i}}{{z}^{\mathrm{2}} \:+\mathrm{6}{z}\:+\mathrm{1}}\:\:,\:{poles}\:{of}\:{f}? \\ $$$${z}^{\mathrm{2}} +\mathrm{6}{z}+\mathrm{1}=\mathrm{0}\Rightarrow\Delta=\mathrm{36}−\mathrm{4}=\:\mathrm{32}\:\:\Rightarrow{z}_{\mathrm{1}} =\frac{−\mathrm{6}\:+\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{2}}=−\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${z}_{\mathrm{2}} =\:−\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\:{we}\:{have}\:\mid{z}_{\mathrm{1}} \mid−\mathrm{1}=\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3}−\mathrm{1}=\mathrm{2}\left(\sqrt{\mathrm{2}}−\mathrm{2}\right)<\mathrm{0} \\ $$$${and}\:\mid{z}_{\mathrm{2}} \mid−\mathrm{1}=\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{1}=\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}\:>\mathrm{1}\:\left({to}\:{eliminate}\:{because}\right. \\ $$$$\left.{out}\:{of}\:{circle}\right) \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} {f}\left({z}\right){dx}=\mathrm{2}{i}\pi\:{Re}\left({f}\:,{z}_{\mathrm{1}} \right)\:{but}\:{f}\left({z}\right)=\:\frac{−\mathrm{2}{i}}{\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)} \\ $$$${Res}\left({f},{z}_{\mathrm{1}} \right)={lim}_{{z}\rightarrow{z}_{\mathrm{1}} } \left({z}−{z}_{\mathrm{1}} \right){f}\left({z}\right)=\:\frac{−\mathrm{2}{i}}{{z}_{\mathrm{1}} −{z}_{\mathrm{2}} }=\:\frac{−\mathrm{2}{i}}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} {f}\left({z}\right){dx}=\:\mathrm{2}{i}\pi.\frac{−{i}}{\mathrm{2}\sqrt{\mathrm{2}}}=\:\frac{\pi}{\sqrt{\mathrm{2}}}\:{so}\:{I}=\:\frac{\pi}{\sqrt{\mathrm{2}}}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com