All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28815 by abdo imad last updated on 30/Jan/18
findthevalueof∫0πdx2cos2x+sin2x.
Answered by mrW2 last updated on 31/Jan/18
∫0πdx2cos2x+sin2x=∫0πdx1+cos2x=2∫0πdx3+2cos2x−1=2∫0πdx3+cos2x=2×2[tan−1(tanx2)22]0π/2=π2
Commented by abdo imad last updated on 31/Jan/18
anothermetodbyredidustheoremwehaveI=∫0πdx1+cos2x=∫0πdx1+1+cos(2x)2=∫0π2dx3+cos(2x)thech.2x=tgiveI=∫02πdt3+costandthech.eit=zgiveI=∫∣z∣=113+z+z−12dziz=∫∣z∣=12dziz(6+z+z−1)=∫∣z∣−2i6z+z2+1=∫∣z∣=1−2iz2+6z+1dzletputf(z)=−2iz2+6z+1,polesoff?z2+6z+1=0⇒Δ=36−4=32⇒z1=−6+422=−3+22z2=−3−22wehave∣z1∣−1=22−3−1=2(2−2)<0and∣z2∣−1=3+22−1=2+22>1(toeliminatebecauseoutofcircle)∫∣z∣=1f(z)dx=2iπRe(f,z1)butf(z)=−2i(z−z1)(z−z2)Res(f,z1)=limz→z1(z−z1)f(z)=−2iz1−z2=−2i42∫∣z∣=1f(z)dx=2iπ.−i22=π2soI=π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com