Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28883 by abdo imad last updated on 31/Jan/18

find  ∫_0 ^∞    (dt/((1+t^2 )^4 ))

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{4}} } \\ $$

Commented by abdo imad last updated on 02/Feb/18

I=(1/2)∫_(−∞) ^(+∞)    (dt/((1+t^2 )^4 ))  let put f(z)=  (1/((1+z^2 )^4 ))  f(z)= (1/((z−i)^4 (z+i)^4 )) the poles of f are i and −i with ordr4   ∫_(−∞) ^(+∞)  f(z)dz= 2iπ Res(f,i) but  Res(f,i) =lim_(z→i)   (1/((4−1)!))((z−i)^4 f(z))^((3))   =lim_(z→i)   (1/6)(  (z+i)^(−4) )^((3))   and we have  (z+i)^(−4) )^((1)) =−4(z+i)^(−5)   ((z+i)^(−4) )^((2)) =20(z+i)^(−6)   ((z+i)^(−4) )^((3)) =−120(z+i)^(−7)   Res(f,i)= (1/6)(−120)(2i)^(−7) =((−20)/(2^7 i^7 )) but i^7 =(i^8 /i)=(1/i)  Res(f,i)=((−20i)/2^7 )=−((2^2 .5i)/2^7 )=−i(5/(32)) and  ∫_(−∞) ^(+∞) f(z)dz= 2iπ(−i(5/(32)))= ((10π)/(32))= ((5π)/(16)) .   finally  I=(1/2)∫_(−∞) ^(+∞) f(z)dz= ((5π)/(32)) .

$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{4}} }\:\:{let}\:{put}\:{f}\left({z}\right)=\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+{z}^{\mathrm{2}} \right)^{\mathrm{4}} } \\ $$$${f}\left({z}\right)=\:\frac{\mathrm{1}}{\left({z}−{i}\right)^{\mathrm{4}} \left({z}+{i}\right)^{\mathrm{4}} }\:{the}\:{poles}\:{of}\:{f}\:{are}\:{i}\:{and}\:−{i}\:{with}\:{ordr}\mathrm{4} \\ $$$$\:\int_{−\infty} ^{+\infty} \:{f}\left({z}\right){dz}=\:\mathrm{2}{i}\pi\:{Res}\left({f},{i}\right)\:{but} \\ $$$${Res}\left({f},{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{1}}{\left(\mathrm{4}−\mathrm{1}\right)!}\left(\left({z}−{i}\right)^{\mathrm{4}} {f}\left({z}\right)\right)^{\left(\mathrm{3}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{1}}{\mathrm{6}}\left(\:\:\left({z}+{i}\right)^{−\mathrm{4}} \right)^{\left(\mathrm{3}\right)} \:\:{and}\:{we}\:{have} \\ $$$$\left.\left({z}+{i}\right)^{−\mathrm{4}} \right)^{\left(\mathrm{1}\right)} =−\mathrm{4}\left({z}+{i}\right)^{−\mathrm{5}} \\ $$$$\left(\left({z}+{i}\right)^{−\mathrm{4}} \right)^{\left(\mathrm{2}\right)} =\mathrm{20}\left({z}+{i}\right)^{−\mathrm{6}} \\ $$$$\left(\left({z}+{i}\right)^{−\mathrm{4}} \right)^{\left(\mathrm{3}\right)} =−\mathrm{120}\left({z}+{i}\right)^{−\mathrm{7}} \\ $$$${Res}\left({f},{i}\right)=\:\frac{\mathrm{1}}{\mathrm{6}}\left(−\mathrm{120}\right)\left(\mathrm{2}{i}\right)^{−\mathrm{7}} =\frac{−\mathrm{20}}{\mathrm{2}^{\mathrm{7}} {i}^{\mathrm{7}} }\:{but}\:{i}^{\mathrm{7}} =\frac{{i}^{\mathrm{8}} }{{i}}=\frac{\mathrm{1}}{{i}} \\ $$$${Res}\left({f},{i}\right)=\frac{−\mathrm{20}{i}}{\mathrm{2}^{\mathrm{7}} }=−\frac{\mathrm{2}^{\mathrm{2}} .\mathrm{5}{i}}{\mathrm{2}^{\mathrm{7}} }=−{i}\frac{\mathrm{5}}{\mathrm{32}}\:{and} \\ $$$$\int_{−\infty} ^{+\infty} {f}\left({z}\right){dz}=\:\mathrm{2}{i}\pi\left(−{i}\frac{\mathrm{5}}{\mathrm{32}}\right)=\:\frac{\mathrm{10}\pi}{\mathrm{32}}=\:\frac{\mathrm{5}\pi}{\mathrm{16}}\:.\:\:\:{finally} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} {f}\left({z}\right){dz}=\:\frac{\mathrm{5}\pi}{\mathrm{32}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com