Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28889 by abdo imad last updated on 31/Jan/18

find  I  = ∫_0 ^(2π) ln(x−e^(iθ) )dθ    and xfromR and x^2 ≠1.

findI=02πln(xeiθ)dθandxfromRandx21.

Commented by abdo imad last updated on 02/Feb/18

let put f(x)= ∫_0 ^(2π)  ln(x −e^(iθ) )dθ we have  f^′ (x)= ∫_0 ^(2π)     (dθ/( x−e^(iθ) ))= ∫_0 ^(2π)  (dθ/(x −cosθ −isinθ))  = ∫_0 ^(2π)  ((x−cosθ +i sinθ)/((x−cosθ)^2  +sin^2 θ))dθ  =∫_0 ^(2π) ((x−cosθ)/(x^2 −2xcosθ +1))dθ +i∫_0 ^(2π)    ((sinθ)/(x^2 −2xcosθ +1))dθ  =A(x) +iB(x)  A(x)=(1/2) ∫_0 ^(2π) ((2x−2cosθ)/(x^2 −2xcosθ+1))dθ=(1/2)[ln∣x^2 −2xcosθ+1∣]_(θ=0) ^(2π)   =0  let find B(x) the ch. e^(iθ) =z give  B(x)=∫_(∣z∣=1)        (((z−z^(−1) )/(2i))/(x^2 −2x((z+z^(−1) )/2) +1))(dz/(iz))  = ∫_(∣z∣=1)     ((z−z^(−1) )/(2i( x^2 −2x((z+z^(−1) )/2)+1)iz))dz  =∫_(∣z∣=1)    ((z^(−1) −z)/(z(2x^2  −2xz −2xz^(−1) +2)))dz  = ∫_(∣z∣=1)     (((1/z)−z)/(2(x^2 z−xz^2 −x +z)))dz  =∫_(∣z∣=1)           ((1−z^2 )/(2z( −xz^2  +(1+x^2 )z −x)))dz  =∫_(∣z∣=1)      ((z^2  −1)/(2z( xz^2  −(1+x^2 )z +x)))dz let introduce the  complex function ψ(z)= ((z^2 −1)/(2z( xz^2 −(1+x^2 )z +x)))  poles ofψ?  xz^2  −(1+x^2 )z +x=0⇒Δ=(1+x^2 )^2 −4x^2   =1+2x^2  +x^4  −4x^2  =(1−x^2 )^2 ⇒z_(1 ) =((1+x^2  +∣1−x^2 ∣)/(2x)) and  z_2 =((1+x^2 −∣1−x^2 ∣)/(2x))    (x≠0)                case 1 if  ∣x∣<1     ⇒z_1 = (1/x) and z_2 =x and we have∣z_1 ∣>1and ∣z_2 ∣<1  ψ(z)=  ((z^2 −1)/(2xz(z−z_1 )(z−z_2 ))) and by residus theorem  ∫_(∣z∣=1) ψ(z)dz=2iπ(Res(ψ,0) +Res(ψ,z_2 ))  Res(ψ,0)=lim_(z→0) zψ(z)= ((−1)/(2x z_1 .z_2 ))=((−1)/(2x))  Res(ψ,z_2 )=lim_(z→z_2 )  (z−z_2 )ψ(z)= ((z_2 ^2  −1)/(2xz_2 (z_2 −z_1 )))  = ((x^2 −1)/(2x^2 (x−(1/x))))=((x^2 −1)/(2x(x^2 −1)))= (1/(2x))  ∫_(∣z∣=1) ψ(z)dz=2iπ(0)=0  case 2  if ∣x∣>1⇒ z_1 = x and z_2 =(1/x) and ∣z_1 ∣>1 and ∣z_2 ∣<1  ∫_(∣z∣=1) ψ(z)dz=2iπ( Res(ψ,0)+Res(ψ,z_2 ))  Res(ψ,0)= ((−1)/(2x )) and Res(ψ,z_2 )=((z_2 ^2  −1)/(2xz_2 (z_2 −z_1 )))  =(((1/x^2 )−1)/(2((1/x)−x)))=  ((1−x^2 )/(2x^2  ((1−x^2 )/x))) =  (1/(2x)) and ∫_(∣z∣=1) ψ(z)dz=0so  A(x)=B(x)=0⇒f^′ (x)=0 ⇒f(x)=λ  ∀ x /x^2 ≠1

letputf(x)=02πln(xeiθ)dθwehavef(x)=02πdθxeiθ=02πdθxcosθisinθ=02πxcosθ+isinθ(xcosθ)2+sin2θdθ=02πxcosθx22xcosθ+1dθ+i02πsinθx22xcosθ+1dθ=A(x)+iB(x)A(x)=1202π2x2cosθx22xcosθ+1dθ=12[lnx22xcosθ+1]θ=02π=0letfindB(x)thech.eiθ=zgiveB(x)=z∣=1zz12ix22xz+z12+1dziz=z∣=1zz12i(x22xz+z12+1)izdz=z∣=1z1zz(2x22xz2xz1+2)dz=z∣=11zz2(x2zxz2x+z)dz=z∣=11z22z(xz2+(1+x2)zx)dz=z∣=1z212z(xz2(1+x2)z+x)dzletintroducethecomplexfunctionψ(z)=z212z(xz2(1+x2)z+x)polesofψ?xz2(1+x2)z+x=0Δ=(1+x2)24x2=1+2x2+x44x2=(1x2)2z1=1+x2+1x22xandz2=1+x21x22x(x0)case1ifx∣<1z1=1xandz2=xandwehavez1∣>1andz2∣<1ψ(z)=z212xz(zz1)(zz2)andbyresidustheoremz∣=1ψ(z)dz=2iπ(Res(ψ,0)+Res(ψ,z2))Res(ψ,0)=limz0zψ(z)=12xz1.z2=12xRes(ψ,z2)=limzz2(zz2)ψ(z)=z2212xz2(z2z1)=x212x2(x1x)=x212x(x21)=12xz∣=1ψ(z)dz=2iπ(0)=0case2ifx∣>1z1=xandz2=1xandz1∣>1andz2∣<1z∣=1ψ(z)dz=2iπ(Res(ψ,0)+Res(ψ,z2))Res(ψ,0)=12xandRes(ψ,z2)=z2212xz2(z2z1)=1x212(1xx)=1x22x21x2x=12xandz∣=1ψ(z)dz=0soA(x)=B(x)=0f(x)=0f(x)=λx/x21

Commented by abdo imad last updated on 02/Feb/18

λ=f(0)=∫_0 ^(2π) ln(−e^(iθ) )dθ = ∫_0 ^(2π)  ln(e^(i(π+θ)) )dθ  =∫_0 ^(2π) i(π+θ)dθ=2iπ^2  +i[(θ^2 /2)]_0 ^(2π) =2iπ^2  +2iπ^2 =4iπ^2 .

λ=f(0)=02πln(eiθ)dθ=02πln(ei(π+θ))dθ=02πi(π+θ)dθ=2iπ2+i[θ22]02π=2iπ2+2iπ2=4iπ2.

Commented by abdo imad last updated on 02/Feb/18

if z=r e^(iθ)        ln(z)=ln(r) +iθ           −π<θ<π .and r>0

ifz=reiθln(z)=ln(r)+iθπ<θ<π.andr>0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com