All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28889 by abdo imad last updated on 31/Jan/18
findI=∫02πln(x−eiθ)dθandxfromRandx2≠1.
Commented by abdo imad last updated on 02/Feb/18
letputf(x)=∫02πln(x−eiθ)dθwehavef′(x)=∫02πdθx−eiθ=∫02πdθx−cosθ−isinθ=∫02πx−cosθ+isinθ(x−cosθ)2+sin2θdθ=∫02πx−cosθx2−2xcosθ+1dθ+i∫02πsinθx2−2xcosθ+1dθ=A(x)+iB(x)A(x)=12∫02π2x−2cosθx2−2xcosθ+1dθ=12[ln∣x2−2xcosθ+1∣]θ=02π=0letfindB(x)thech.eiθ=zgiveB(x)=∫∣z∣=1z−z−12ix2−2xz+z−12+1dziz=∫∣z∣=1z−z−12i(x2−2xz+z−12+1)izdz=∫∣z∣=1z−1−zz(2x2−2xz−2xz−1+2)dz=∫∣z∣=11z−z2(x2z−xz2−x+z)dz=∫∣z∣=11−z22z(−xz2+(1+x2)z−x)dz=∫∣z∣=1z2−12z(xz2−(1+x2)z+x)dzletintroducethecomplexfunctionψ(z)=z2−12z(xz2−(1+x2)z+x)polesofψ?xz2−(1+x2)z+x=0⇒Δ=(1+x2)2−4x2=1+2x2+x4−4x2=(1−x2)2⇒z1=1+x2+∣1−x2∣2xandz2=1+x2−∣1−x2∣2x(x≠0)case1if∣x∣<1⇒z1=1xandz2=xandwehave∣z1∣>1and∣z2∣<1ψ(z)=z2−12xz(z−z1)(z−z2)andbyresidustheorem∫∣z∣=1ψ(z)dz=2iπ(Res(ψ,0)+Res(ψ,z2))Res(ψ,0)=limz→0zψ(z)=−12xz1.z2=−12xRes(ψ,z2)=limz→z2(z−z2)ψ(z)=z22−12xz2(z2−z1)=x2−12x2(x−1x)=x2−12x(x2−1)=12x∫∣z∣=1ψ(z)dz=2iπ(0)=0case2if∣x∣>1⇒z1=xandz2=1xand∣z1∣>1and∣z2∣<1∫∣z∣=1ψ(z)dz=2iπ(Res(ψ,0)+Res(ψ,z2))Res(ψ,0)=−12xandRes(ψ,z2)=z22−12xz2(z2−z1)=1x2−12(1x−x)=1−x22x21−x2x=12xand∫∣z∣=1ψ(z)dz=0soA(x)=B(x)=0⇒f′(x)=0⇒f(x)=λ∀x/x2≠1
λ=f(0)=∫02πln(−eiθ)dθ=∫02πln(ei(π+θ))dθ=∫02πi(π+θ)dθ=2iπ2+i[θ22]02π=2iπ2+2iπ2=4iπ2.
ifz=reiθln(z)=ln(r)+iθ−π<θ<π.andr>0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com