Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 28894 by amit96 last updated on 01/Feb/18

Commented by abdo imad last updated on 01/Feb/18

let put f(x)=F(x,y)= ∫_0 ^(x^2 +y^2 ) cos^2 (t+x)dt  we have by ch.  t+x=u    ⇒f(x)= ∫_x ^(x^2 +y^2 +x) cos^2 udu =∫_x ^(x^2 +y^2 +x)  ((1+cos(2u))/2)du  =(1/2)(x^2 +y^2 )  +[(1/4)sin(2u)]_x ^(x^2 +y^2 +x)   =(1/2)(x^2 +y^2 ) +(1/4)(sin(2x^2 +2y^2 +2x)−sin(2x))  (∂F/∂x)(x,y)=x +(1/4)( (4x+2)cos(2x^2 +2y^2 +2x)−2cos(2x))  (∂F/∂x)(0,y)= (1/4)( 2cos(2y^2 )−2)=(1/2)cos(2y^2 )−(1/2) and any answer  given is correct.!

$${let}\:{put}\:{f}\left({x}\right)={F}\left({x},{y}\right)=\:\int_{\mathrm{0}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } {cos}^{\mathrm{2}} \left({t}+{x}\right){dt}\:\:{we}\:{have}\:{by}\:{ch}. \\ $$$${t}+{x}={u}\:\:\:\:\Rightarrow{f}\left({x}\right)=\:\int_{{x}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}} {cos}^{\mathrm{2}} {udu}\:=\int_{{x}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}} \:\frac{\mathrm{1}+{cos}\left(\mathrm{2}{u}\right)}{\mathrm{2}}{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\:\:+\left[\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{2}{u}\right)\right]_{{x}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\:+\frac{\mathrm{1}}{\mathrm{4}}\left({sin}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} +\mathrm{2}{x}\right)−{sin}\left(\mathrm{2}{x}\right)\right) \\ $$$$\frac{\partial{F}}{\partial{x}}\left({x},{y}\right)={x}\:+\frac{\mathrm{1}}{\mathrm{4}}\left(\:\left(\mathrm{4}{x}+\mathrm{2}\right){cos}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} +\mathrm{2}{x}\right)−\mathrm{2}{cos}\left(\mathrm{2}{x}\right)\right) \\ $$$$\frac{\partial{F}}{\partial{x}}\left(\mathrm{0},{y}\right)=\:\frac{\mathrm{1}}{\mathrm{4}}\left(\:\mathrm{2}{cos}\left(\mathrm{2}{y}^{\mathrm{2}} \right)−\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\mathrm{2}{y}^{\mathrm{2}} \right)−\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{any}\:{answer} \\ $$$${given}\:{is}\:{correct}.! \\ $$$$ \\ $$

Commented by abdo imad last updated on 01/Feb/18

(∂F/∂x)(0,y)=(1/2)(1−2sin^2 (2y^2 ))−(1/2)=−sin^2 (2y^2 ).

$$\frac{\partial{F}}{\partial{x}}\left(\mathrm{0},{y}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \left(\mathrm{2}{y}^{\mathrm{2}} \right)\right)−\frac{\mathrm{1}}{\mathrm{2}}=−{sin}^{\mathrm{2}} \left(\mathrm{2}{y}^{\mathrm{2}} \right). \\ $$

Commented by mrW2 last updated on 01/Feb/18

−sin^2 (2y^2 ) or −sin^2 (y^2 ) ?

$$−{sin}^{\mathrm{2}} \left(\mathrm{2}{y}^{\mathrm{2}} \right)\:{or}\:−{sin}^{\mathrm{2}} \left({y}^{\mathrm{2}} \right)\:? \\ $$

Commented by amit96 last updated on 01/Feb/18

you are right at mrw2

$${you}\:{are}\:{right}\:{at}\:{mrw}\mathrm{2} \\ $$

Commented by mrW2 last updated on 01/Feb/18

sir, you had two different solutions:  (∂F/∂x)(0,y)==(1/2)cos(2y^2 )−(1/2)    ....(I)  and  (∂F/∂x)(0,y)= −sin^2  (2y^2 )   ....(II)    if (I) is correct, then −sin^2  (y^2 ) is  correct, not −sin^2  (2y^2 ). so I asked  you which is correct: −sin^2  (y^2 ) or  −sin^2  (2y^2 )?

$${sir},\:{you}\:{had}\:{two}\:{different}\:{solutions}: \\ $$$$\frac{\partial{F}}{\partial{x}}\left(\mathrm{0},{y}\right)==\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\mathrm{2}{y}^{\mathrm{2}} \right)−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:....\left({I}\right) \\ $$$${and} \\ $$$$\frac{\partial{F}}{\partial{x}}\left(\mathrm{0},{y}\right)=\:−\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{2}{y}^{\mathrm{2}} \right)\:\:\:....\left({II}\right) \\ $$$$ \\ $$$${if}\:\left({I}\right)\:{is}\:{correct},\:{then}\:−\mathrm{sin}^{\mathrm{2}} \:\left({y}^{\mathrm{2}} \right)\:{is} \\ $$$${correct},\:{not}\:−\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{2}{y}^{\mathrm{2}} \right).\:{so}\:{I}\:{asked} \\ $$$${you}\:{which}\:{is}\:{correct}:\:−\mathrm{sin}^{\mathrm{2}} \:\left({y}^{\mathrm{2}} \right)\:{or} \\ $$$$−\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{2}{y}^{\mathrm{2}} \right)? \\ $$

Answered by mrW2 last updated on 01/Feb/18

∫cos^2  t dt=(1/2)∫(1+cos 2t)dt=(t/2)+((sin 2t)/4)+C  F(x,y)=∫_0 ^( x^2 +y^2 ) cos^2  (t+x)dt  =[((t+x)/2)+((sin 2(t+x))/4)]_0 ^(x^2 +y^2 )   =[((x^2 +y^2 +x)/2)−(x/2)+((sin 2(x^2 +y^2 +x))/4)−((sin 2x)/4)]  =[((x^2 +y^2 )/2)+((sin 2(x^2 +y^2 +x))/4)−((sin 2x)/4)]  (∂F/∂x)=x+((cos 2(x^2 +y^2 +x)×2(2x+1))/4)−((cos 2x)/4)×2  (∂F/∂x)=x+(((2x+1) cos 2(x^2 +y^2 +x))/2)−((cos 2x)/2)  (∂F/∂x)(0,y)=((cos 2(y^2 ))/2)−(1/2)=((1−2 sin^2  y^2 )/2)−(1/2)=−sin^2  y^2   ⇒none of the answers is correct.

$$\int\mathrm{cos}^{\mathrm{2}} \:{t}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}{t}\right){dt}=\frac{{t}}{\mathrm{2}}+\frac{\mathrm{sin}\:\mathrm{2}{t}}{\mathrm{4}}+{C} \\ $$$${F}\left({x},{y}\right)=\int_{\mathrm{0}} ^{\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \mathrm{cos}^{\mathrm{2}} \:\left({t}+{x}\right){dt} \\ $$$$=\left[\frac{{t}+{x}}{\mathrm{2}}+\frac{\mathrm{sin}\:\mathrm{2}\left({t}+{x}\right)}{\mathrm{4}}\right]_{\mathrm{0}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$=\left[\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}}{\mathrm{2}}−\frac{{x}}{\mathrm{2}}+\frac{\mathrm{sin}\:\mathrm{2}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}\right)}{\mathrm{4}}−\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{4}}\right] \\ $$$$=\left[\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{sin}\:\mathrm{2}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}\right)}{\mathrm{4}}−\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{4}}\right] \\ $$$$\frac{\partial{F}}{\partial{x}}={x}+\frac{\mathrm{cos}\:\mathrm{2}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}\right)×\mathrm{2}\left(\mathrm{2}{x}+\mathrm{1}\right)}{\mathrm{4}}−\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{4}}×\mathrm{2} \\ $$$$\frac{\partial{F}}{\partial{x}}={x}+\frac{\left(\mathrm{2}{x}+\mathrm{1}\right)\:\mathrm{cos}\:\mathrm{2}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}\right)}{\mathrm{2}}−\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{2}} \\ $$$$\frac{\partial{F}}{\partial{x}}\left(\mathrm{0},{y}\right)=\frac{\mathrm{cos}\:\mathrm{2}\left({y}^{\mathrm{2}} \right)}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{y}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}=−\mathrm{sin}^{\mathrm{2}} \:{y}^{\mathrm{2}} \\ $$$$\Rightarrow{none}\:{of}\:{the}\:{answers}\:{is}\:{correct}. \\ $$

Commented by amit96 last updated on 01/Feb/18

thanks

$${thanks} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com