Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 28911 by ajfour last updated on 01/Feb/18

Commented by ajfour last updated on 01/Feb/18

Find area of coloured triangle  and radius of circle in terms of  a, 𝛉, and 𝛗 . Assume θ , φ ≤ (π/4) .  Estimate maximum value of  radius in terms of a.

Findareaofcolouredtriangleandradiusofcircleintermsofa,θ,andϕ.Assumeθ,ϕπ4.Estimatemaximumvalueofradiusintermsofa.

Answered by mrW2 last updated on 01/Feb/18

Commented by mrW2 last updated on 01/Feb/18

BF=(a/(cos θ))  DF=a(1−tan θ)  DE=a(1−tan φ)  tan ϕ=((DE)/(DF))=((1−tan φ)/(1−tan θ))  ⇒ϕ=tan^(−1) (((1−tan φ)/(1−tan θ)))  α=90−(θ+φ)  β=180−(90−θ)−ϕ=90−(ϕ−θ)  (r/(tan (α/2)))+(r/(tan (β/2)))=(a/(cos θ))  (1/(tan (α/2)))=((1+cos α)/(sin α))=((1+sin (θ+φ))/(cos (θ+φ)))  (1/(tan (β/2)))=((1+cos β)/(sin β))=((1+sin (ϕ−θ))/(cos (ϕ−θ)))  ⇒r[((1+sin (φ+θ))/(cos (φ+θ)))+((1+sin (ϕ−θ))/(cos (ϕ−θ)))]=(a/(cos θ))  ⇒r=((a cos (φ+θ) cos (ϕ−θ))/(cos θ [cos (φ+θ)+cos (ϕ−θ)+sin (φ+θ) cos (ϕ−θ)+cos (φ+θ) sin (ϕ−θ)]))  ⇒r=((a cos (φ+θ) cos (ϕ−θ))/(cos θ [cos (φ+θ)+cos (ϕ−θ)+sin (φ+ϕ)]))    A_Δ =(1/2)×(a/(cos θ))×(a/(cos φ))×sin α=(a^2 /2)×((cos (θ+φ))/(cos θ cos φ))  ⇒A_Δ =(a^2 /2)×((cos (θ+φ))/(cos θ cos φ))=(a^2 /2)(1−tan θ tan φ)    For max. of radius r:   φ=θ  ϕ=(π/4)  ⇒r=((a cos (2θ) cos ((π/4)−θ))/(cos θ [cos (2θ)+cos ((π/4)−θ)+sin ((π/4)+θ)]))  ⇒r=((a cos (2θ) cos ((π/4)−θ))/(cos θ [cos (2θ)+2cos ((π/4)−θ)]))  ⇒r=((a cos (2θ) (cos θ+sin θ)×(1/(√2)))/(cos θ [cos (2θ)+(√2)(cos θ+sin θ)]))  ⇒r=((a cos (2θ) (cos θ+sin θ))/(cos θ [(√2) cos (2θ)+2(cos θ+sin θ)]))  ⇒r=((a cos (2θ))/(cos θ [(√2) (cos θ−sin θ)+2]))  f(θ)=((cos (2θ))/(cos θ [(√2) (cos θ−sin θ)+2]))  f(θ)=((cos^2  θ−sin^2  θ)/(cos^2  θ [(√2) (1−tan θ)+(2/(cos θ))]))  f(θ)=((1−tan^2  θ)/( (√2)(1−tan θ)+2(√(1+tan^2  θ))))  f(θ)=((1−x^2 )/( (√2)(1−x)+2(√(1+x^2 )))) with x=tan θ    f(θ)_(max) ≈0.3032 at θ≈9.3°  ⇒r_(max) ≈0.3032 a

BF=acosθDF=a(1tanθ)DE=a(1tanϕ)tanφ=DEDF=1tanϕ1tanθφ=tan1(1tanϕ1tanθ)α=90(θ+ϕ)β=180(90θ)φ=90(φθ)rtanα2+rtanβ2=acosθ1tanα2=1+cosαsinα=1+sin(θ+ϕ)cos(θ+ϕ)1tanβ2=1+cosβsinβ=1+sin(φθ)cos(φθ)r[1+sin(ϕ+θ)cos(ϕ+θ)+1+sin(φθ)cos(φθ)]=acosθr=acos(ϕ+θ)cos(φθ)cosθ[cos(ϕ+θ)+cos(φθ)+sin(ϕ+θ)cos(φθ)+cos(ϕ+θ)sin(φθ)]r=acos(ϕ+θ)cos(φθ)cosθ[cos(ϕ+θ)+cos(φθ)+sin(ϕ+φ)]AΔ=12×acosθ×acosϕ×sinα=a22×cos(θ+ϕ)cosθcosϕAΔ=a22×cos(θ+ϕ)cosθcosϕ=a22(1tanθtanϕ)Formax.ofradiusr:ϕ=θφ=π4r=acos(2θ)cos(π4θ)cosθ[cos(2θ)+cos(π4θ)+sin(π4+θ)]r=acos(2θ)cos(π4θ)cosθ[cos(2θ)+2cos(π4θ)]r=acos(2θ)(cosθ+sinθ)×12cosθ[cos(2θ)+2(cosθ+sinθ)]r=acos(2θ)(cosθ+sinθ)cosθ[2cos(2θ)+2(cosθ+sinθ)]r=acos(2θ)cosθ[2(cosθsinθ)+2]f(θ)=cos(2θ)cosθ[2(cosθsinθ)+2]f(θ)=cos2θsin2θcos2θ[2(1tanθ)+2cosθ]f(θ)=1tan2θ2(1tanθ)+21+tan2θf(θ)=1x22(1x)+21+x2withx=tanθf(θ)max0.3032atθ9.3°rmax0.3032a

Commented by ajfour last updated on 01/Feb/18

Area(△BEF)=(1/2)(BE)(BF)sin α   =((a^2 cos (𝛉+𝛗))/(2cos 𝛉cos 𝛗)) =(r/2)(BE+BF+EF)  ⇒  r((a/(cos 𝛗))+(a/(cos 𝛉))+EF)=((a^2 cos (𝛉+𝛗))/(cos 𝛉cos 𝛗))  EF=a(√((1−tan 𝛉)^2 +(1−tan 𝛗)^2 ))    r=a[((cos (𝛉+𝛗))/(cos 𝛉+cos 𝛗+(√2)((√(cos^2 𝛗 sin^2 (𝛉−𝛑/4)+cos^2 𝛉 sin^2 (𝛗−𝛑/4))) )))]  expression for  r, if 𝛉=𝛗 ,  r=a[((cos 2𝛉)/(2cos 𝛉+2cos 𝛉 ∣sin (𝛉−𝛑/4)∣))]  =((acos 2𝛉)/(2cos 𝛉[1+sin ((𝛑/4)−𝛉)]))  =((a(1−x^2 ))/(2((√(1+x^2 ))+(1/(√2))−(x/(√2)))))    (if we let x=tan 𝛉)   r(x)=(a/(√2))(((1−x^2 )/((√(2(1+x^2 )))+1−x)))      (dr/dx)=0    ⇒     x= ?  (please help)   (dr/dx)=0   leads to the equation  (x−1)^4 (1+x^2 )=2x^2 (3+x^2 )^2   find its roots that belong to (0, 1).

Area(BEF)=12(BE)(BF)sinα=a2cos(θ+ϕ)2cosθcosϕ=r2(BE+BF+EF)r(acosϕ+acosθ+EF)=a2cos(θ+ϕ)cosθcosϕEF=a(1tanθ)2+(1tanϕ)2r=a[cos(θ+ϕ)cosθ+cosϕ+2(cos2ϕsin2(θπ/4)+cos2θsin2(ϕπ/4))]expressionforr,ifθ=ϕ,r=a[cos2θ2cosθ+2cosθsin(θπ/4)]=acos2θ2cosθ[1+sin(π4θ)]=a(1x2)2(1+x2+12x2)(ifweletx=tanθ)r(x)=a2(1x22(1+x2)+1x)drdx=0x=?(pleasehelp)drdx=0leadstotheequation(x1)4(1+x2)=2x2(3+x2)2finditsrootsthatbelongto(0,1).

Commented by ajfour last updated on 01/Feb/18

Thank you mrW2 Sir !

Commented by mrW2 last updated on 01/Feb/18

Thank you sir! I could form my formula to the same expression as yours. I think it is not possible to solve x analytically. I found my solution through graph. x=0.165

Commented by ajfour last updated on 01/Feb/18

Which graph app sir?

Commented by mrW2 last updated on 01/Feb/18

One can use e.g. Geogebra.

Commented by mrW2 last updated on 01/Feb/18

Commented by ajfour last updated on 01/Feb/18

thanks Sir .

thanksSir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com