Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 28940 by ajfour last updated on 01/Feb/18

Commented by ajfour last updated on 01/Feb/18

(i) Find tension in the three   threads, each of length l.  (ii) Find tension for a=b=c   (The blue triangle is a portion of  the roof ) .

$$\left({i}\right)\:{Find}\:{tension}\:{in}\:{the}\:{three}\: \\ $$$${threads},\:{each}\:{of}\:{length}\:{l}. \\ $$$$\left({ii}\right)\:{Find}\:{tension}\:{for}\:{a}={b}={c}\: \\ $$$$\left({The}\:{blue}\:{triangle}\:{is}\:{a}\:{portion}\:{of}\right. \\ $$$$\left.{the}\:{roof}\:\right)\:. \\ $$

Answered by mrW2 last updated on 02/Feb/18

Commented by mrW2 last updated on 02/Feb/18

the mass must hang under the  circumcenter O of the triangle.    let R=radius of circumcircle  OA=OB=OC=R    angle made by threads and horizontal  is θ with cos θ=(R/L) or θ=cos^(−1) (R/L).    let′s see the vertical component of  tension T_2 :  the sum of torque about line BC=0,  T_2  sin θ×h_A =mg e_A   ⇒T_2 =((mg)/(sin θ×(h_A /e_A )))  h_A =c sin B  e_A =R cos ∠BOD=R cos ((∠BOC)/2)=R cos A  R=(a/(2 sin A))=(b/(2 sin B))=(c/(2 sin C))  ⇒c=2R sin C  ⇒h_A =2R sin C sin B  ⇒(h_A /e_A )=((2 sin B sin C)/(cos A))  ⇒=((−cos (B+C)+cos (B−C))/(cos A))  ⇒=((cos A+cos (B−C))/(cos A))  ⇒=1+((cos (B−C))/(cos A))    ⇒T_2 =((mg)/(sin θ (((2 sin B sin C)/(cos A)))))  or  ⇒T_2 =((mg)/(sin θ [1+((cos (B−C))/(cos A))]))    T_1  and T_3  similarly.    In case of a=b=c,  R=(2/3)×((√3)/2)a=(((√3)a)/3)  cos θ=(((√3)a)/(3L))  sin θ=(√(1−(1/3)((a/L))^2 ))  A=B=C=60°  ⇒T_1 =T_2 =T_3 =((mg)/(3(√(1−(1/3)((a/L))^2 ))))

$${the}\:{mass}\:{must}\:{hang}\:{under}\:{the} \\ $$$${circumcenter}\:{O}\:{of}\:{the}\:{triangle}. \\ $$$$ \\ $$$${let}\:{R}={radius}\:{of}\:{circumcircle} \\ $$$${OA}={OB}={OC}={R} \\ $$$$ \\ $$$${angle}\:{made}\:{by}\:{threads}\:{and}\:{horizontal} \\ $$$${is}\:\theta\:{with}\:\mathrm{cos}\:\theta=\frac{{R}}{{L}}\:{or}\:\theta=\mathrm{cos}^{−\mathrm{1}} \frac{{R}}{{L}}. \\ $$$$ \\ $$$${let}'{s}\:{see}\:{the}\:{vertical}\:{component}\:{of} \\ $$$${tension}\:{T}_{\mathrm{2}} : \\ $$$${the}\:{sum}\:{of}\:{torque}\:{about}\:{line}\:{BC}=\mathrm{0}, \\ $$$${T}_{\mathrm{2}} \:\mathrm{sin}\:\theta×{h}_{{A}} ={mg}\:{e}_{{A}} \\ $$$$\Rightarrow{T}_{\mathrm{2}} =\frac{{mg}}{\mathrm{sin}\:\theta×\frac{{h}_{{A}} }{{e}_{{A}} }} \\ $$$${h}_{{A}} ={c}\:\mathrm{sin}\:{B} \\ $$$${e}_{{A}} ={R}\:\mathrm{cos}\:\angle{BOD}={R}\:\mathrm{cos}\:\frac{\angle{BOC}}{\mathrm{2}}={R}\:\mathrm{cos}\:{A} \\ $$$${R}=\frac{{a}}{\mathrm{2}\:\mathrm{sin}\:{A}}=\frac{{b}}{\mathrm{2}\:\mathrm{sin}\:{B}}=\frac{{c}}{\mathrm{2}\:\mathrm{sin}\:{C}} \\ $$$$\Rightarrow{c}=\mathrm{2}{R}\:\mathrm{sin}\:{C} \\ $$$$\Rightarrow{h}_{{A}} =\mathrm{2}{R}\:\mathrm{sin}\:{C}\:\mathrm{sin}\:{B} \\ $$$$\Rightarrow\frac{{h}_{{A}} }{{e}_{{A}} }=\frac{\mathrm{2}\:\mathrm{sin}\:{B}\:\mathrm{sin}\:{C}}{\mathrm{cos}\:{A}} \\ $$$$\Rightarrow=\frac{−\mathrm{cos}\:\left({B}+{C}\right)+\mathrm{cos}\:\left({B}−{C}\right)}{\mathrm{cos}\:{A}} \\ $$$$\Rightarrow=\frac{\mathrm{cos}\:{A}+\mathrm{cos}\:\left({B}−{C}\right)}{\mathrm{cos}\:{A}} \\ $$$$\Rightarrow=\mathrm{1}+\frac{\mathrm{cos}\:\left({B}−{C}\right)}{\mathrm{cos}\:{A}} \\ $$$$ \\ $$$$\Rightarrow{T}_{\mathrm{2}} =\frac{{mg}}{\mathrm{sin}\:\theta\:\left(\frac{\mathrm{2}\:\mathrm{sin}\:{B}\:\mathrm{sin}\:{C}}{\mathrm{cos}\:{A}}\right)} \\ $$$${or} \\ $$$$\Rightarrow{T}_{\mathrm{2}} =\frac{{mg}}{\mathrm{sin}\:\theta\:\left[\mathrm{1}+\frac{\mathrm{cos}\:\left({B}−{C}\right)}{\mathrm{cos}\:{A}}\right]} \\ $$$$ \\ $$$${T}_{\mathrm{1}} \:{and}\:{T}_{\mathrm{3}} \:{similarly}. \\ $$$$ \\ $$$${In}\:{case}\:{of}\:{a}={b}={c}, \\ $$$${R}=\frac{\mathrm{2}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{a}=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{3}} \\ $$$$\mathrm{cos}\:\theta=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{3}{L}} \\ $$$$\mathrm{sin}\:\theta=\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{{a}}{{L}}\right)^{\mathrm{2}} } \\ $$$${A}={B}={C}=\mathrm{60}° \\ $$$$\Rightarrow{T}_{\mathrm{1}} ={T}_{\mathrm{2}} ={T}_{\mathrm{3}} =\frac{{mg}}{\mathrm{3}\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{{a}}{{L}}\right)^{\mathrm{2}} }} \\ $$

Commented by ajfour last updated on 02/Feb/18

Understood Sir, Very Nice !

$${Understood}\:{Sir},\:{Very}\:{Nice}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com