Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 28981 by abdo imad last updated on 02/Feb/18

find the values of Π_(n=2) ^∞ (1−(2/(n(n+1)))) .

$${find}\:{the}\:{values}\:{of}\:\prod_{{n}=\mathrm{2}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}\right)\:. \\ $$

Commented by abdo imad last updated on 03/Feb/18

Π_(n=2) ^∞  (1−(2/(n(n+1))))=lim_(n→+∞)  S_n   with   S_n = Π_(k=2) ^n  (1−(2/(k(k+1))))=Π_(k=2) ^n  ( ((k^2  +k−2)/(k(k+1)))) but  k^2  +k−2=k^2  −k+ 2k−2=k(k−1) +2(k−1)  =(k−1)(k+2)  S_n = Π_(k=2) ^n    ((k−1)/k) .((k+2)/(k+1))=Π_(k=1) ^(n−1)  (k/(k+1)) .Π_(k=3) ^(n+1)  ((k+1)/k)    =(1/2).(2/3)Π_(k=3) ^(n−1)  (k/(k+1)).Π_(k=3) ^(n−1)  ((k+1)/k).((n+1)/n).((n+2)/(n+1))  S_n = (1/3).((n+2)/n) ⇒lim_(n→+ ∞)  S_n =(1/3) so  Π_(n=2) ^∞  (1−(2/(n(n+1))))= (1/3) .

$$\prod_{{n}=\mathrm{2}} ^{\infty} \:\left(\mathrm{1}−\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}\right)={lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \:\:{with}\: \\ $$$${S}_{{n}} =\:\prod_{{k}=\mathrm{2}} ^{{n}} \:\left(\mathrm{1}−\frac{\mathrm{2}}{{k}\left({k}+\mathrm{1}\right)}\right)=\prod_{{k}=\mathrm{2}} ^{{n}} \:\left(\:\frac{{k}^{\mathrm{2}} \:+{k}−\mathrm{2}}{{k}\left({k}+\mathrm{1}\right)}\right)\:{but} \\ $$$${k}^{\mathrm{2}} \:+{k}−\mathrm{2}={k}^{\mathrm{2}} \:−{k}+\:\mathrm{2}{k}−\mathrm{2}={k}\left({k}−\mathrm{1}\right)\:+\mathrm{2}\left({k}−\mathrm{1}\right) \\ $$$$=\left({k}−\mathrm{1}\right)\left({k}+\mathrm{2}\right) \\ $$$${S}_{{n}} =\:\prod_{{k}=\mathrm{2}} ^{{n}} \:\:\:\frac{{k}−\mathrm{1}}{{k}}\:.\frac{{k}+\mathrm{2}}{{k}+\mathrm{1}}=\prod_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{{k}}{{k}+\mathrm{1}}\:.\prod_{{k}=\mathrm{3}} ^{{n}+\mathrm{1}} \:\frac{{k}+\mathrm{1}}{{k}}\:\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{2}}{\mathrm{3}}\prod_{{k}=\mathrm{3}} ^{{n}−\mathrm{1}} \:\frac{{k}}{{k}+\mathrm{1}}.\prod_{{k}=\mathrm{3}} ^{{n}−\mathrm{1}} \:\frac{{k}+\mathrm{1}}{{k}}.\frac{{n}+\mathrm{1}}{{n}}.\frac{{n}+\mathrm{2}}{{n}+\mathrm{1}} \\ $$$${S}_{{n}} =\:\frac{\mathrm{1}}{\mathrm{3}}.\frac{{n}+\mathrm{2}}{{n}}\:\Rightarrow{lim}_{{n}\rightarrow+\:\infty} \:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{3}}\:{so} \\ $$$$\prod_{{n}=\mathrm{2}} ^{\infty} \:\left(\mathrm{1}−\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}\right)=\:\frac{\mathrm{1}}{\mathrm{3}}\:. \\ $$$$ \\ $$

Answered by iv@0uja last updated on 03/Feb/18

1−(2/(n(n+1)))=((n^2 +n−2)/(n(n+1)))                         =(((n−1)(n+2))/(n(n+1)))  Π_(n=2) ^m (((n−1)(n+2))/(n(n+1)))  =((1∙4)/(2∙3))×((2∙5)/(3∙4))×((3∙6)/(4∙5))×...×(((m−1)(m+2))/(m(m+1)))  =(1/3)×((m+2)/m)  lim_(m→∞) ((m+2)/m)=1  Π_(n=2) ^∞ (((n−1)(n+2))/(n(n+1)))=(1/3)×1=(1/3)

$$\mathrm{1}−\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}=\frac{{n}^{\mathrm{2}} +{n}−\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left({n}−\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{{n}\left({n}+\mathrm{1}\right)} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{{m}} {\prod}}\frac{\left({n}−\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{{n}\left({n}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}\centerdot\mathrm{4}}{\mathrm{2}\centerdot\mathrm{3}}×\frac{\mathrm{2}\centerdot\mathrm{5}}{\mathrm{3}\centerdot\mathrm{4}}×\frac{\mathrm{3}\centerdot\mathrm{6}}{\mathrm{4}\centerdot\mathrm{5}}×...×\frac{\left({m}−\mathrm{1}\right)\left({m}+\mathrm{2}\right)}{{m}\left({m}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}×\frac{{m}+\mathrm{2}}{{m}} \\ $$$$\underset{{m}\rightarrow\infty} {\mathrm{lim}}\frac{{m}+\mathrm{2}}{{m}}=\mathrm{1} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}\frac{\left({n}−\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{{n}\left({n}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{3}}×\mathrm{1}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com