Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28997 by abdo imad last updated on 03/Feb/18

find ∫_(−∞) ^(+∞)       (dx/((1+x^2 )( 2+e^(ix) ))) .

$${find}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:\mathrm{2}+{e}^{{ix}} \right)}\:. \\ $$

Commented by abdo imad last updated on 04/Feb/18

let put I= ∫_(−∞) ^(+∞)         (dx/((1+x^2 )(2+e^(ix) )))  I=  ∫_(−∞) ^(+∞)       (dx/((1+x^2 )(2+cosx +isinx)))  I= ∫_(−∞) ^(+∞)   ((2+cosx −isinx)/((1+x^2 )((2+cosx)^2  +sin^2 x)))  I = ∫_(−∞) ^(+∞)     ((2+cosx)/((1+x^2 )(5 +4cosx)))dx  −i ∫_(−∞) ^(+∞)    ((sinx)/((1+x^2 )(5+4cosx)))dx  =∫_(−∞) ^(+∞)       ((2 +cosx)/((1+x^2 )(5+4cosx)))dx −0 for another side  let introduce the complex function  w(z)=   (1/((1+z^2 )(2 +e^(iz) ))) the poles of w are i and −i(simple)  by residus theorem  ∫_(−∞) ^(+∞)  w(z)dz=2iπ Res(w,i)  but  Res(w,i)=lim_(z→i) (z−i)w(z)= lim_(z→i)  (1/((z+i)(2 +e^(iz) )))  =         (1/(2i( 2 + e^(−1) ))) ⇒ ∫_(−∞) ^(+∞) w(z)dz=2iπ .(1/(2i(2+ e^(−1) )))  =  (π/(2 +(1/e)))=  ((πe)/(2e+1)) ⇒  I=  ((πe)/(2e+1))= ∫_(−∞) ^(+∞)         ((2+cosx)/((1+x^2 )(5+4cosx+))dx.

$${let}\:{put}\:{I}=\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{2}+{e}^{{ix}} \right)} \\ $$$${I}=\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{2}+{cosx}\:+{isinx}\right)} \\ $$$${I}=\:\int_{−\infty} ^{+\infty} \:\:\frac{\mathrm{2}+{cosx}\:−{isinx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\left(\mathrm{2}+{cosx}\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} {x}\right)} \\ $$$${I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{\mathrm{2}+{cosx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{5}\:+\mathrm{4}{cosx}\right)}{dx}\:\:−{i}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{sinx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{5}+\mathrm{4}{cosx}\right)}{dx} \\ $$$$=\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{\mathrm{2}\:+{cosx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{5}+\mathrm{4}{cosx}\right)}{dx}\:−\mathrm{0}\:{for}\:{another}\:{side} \\ $$$${let}\:{introduce}\:{the}\:{complex}\:{function} \\ $$$${w}\left({z}\right)=\:\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+{z}^{\mathrm{2}} \right)\left(\mathrm{2}\:+{e}^{{iz}} \right)}\:{the}\:{poles}\:{of}\:{w}\:{are}\:{i}\:{and}\:−{i}\left({simple}\right) \\ $$$${by}\:{residus}\:{theorem} \\ $$$$\int_{−\infty} ^{+\infty} \:{w}\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Res}\left({w},{i}\right)\:\:{but} \\ $$$${Res}\left({w},{i}\right)={lim}_{{z}\rightarrow{i}} \left({z}−{i}\right){w}\left({z}\right)=\:{lim}_{{z}\rightarrow{i}} \:\frac{\mathrm{1}}{\left({z}+{i}\right)\left(\mathrm{2}\:+{e}^{{iz}} \right)} \\ $$$$=\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}{i}\left(\:\mathrm{2}\:+\:{e}^{−\mathrm{1}} \right)}\:\Rightarrow\:\int_{−\infty} ^{+\infty} {w}\left({z}\right){dz}=\mathrm{2}{i}\pi\:.\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{2}+\:{e}^{−\mathrm{1}} \right)} \\ $$$$=\:\:\frac{\pi}{\mathrm{2}\:+\frac{\mathrm{1}}{{e}}}=\:\:\frac{\pi{e}}{\mathrm{2}{e}+\mathrm{1}}\:\Rightarrow \\ $$$${I}=\:\:\frac{\pi{e}}{\mathrm{2}{e}+\mathrm{1}}=\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\:\:\frac{\mathrm{2}+{cosx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{5}+\mathrm{4}{cosx}+\right.}{dx}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com