Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29000 by abdo imad last updated on 03/Feb/18

prove thst    ∫_R     (e^(iξx) /(1+x^2 ))dx= π e^(−∣ξ∣)   .

$${prove}\:{thst}\:\:\:\:\int_{\mathbb{R}} \:\:\:\:\frac{{e}^{{i}\xi{x}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\:\pi\:{e}^{−\mid\xi\mid} \:\:. \\ $$

Commented by abdo imad last updated on 04/Feb/18

let  put I= ∫_(−∞) ^(+∞)   (e^(iξx) /(1+x^2 ))dx   case 1  for ξ ≥0   let put  f(z)= (e^(iξz) /(1+z^2 )) the poles of f are  i and −i( simples) so we have   ∫_(−∞) ^(+∞)  f(z)dz=2iπ Re(f,i)=2iπ (e^(i(ξi)) /(2i))=π.e^(−ξ )      case 2  if ξ<o   I= ∫_R   (e^(−iξ(−x)) /(1+x^2 ))dx = ∫_R  (e^(−iξt) /(1+t^2 ))dt  (ch.−x=t)  then   we take g(x)= (e^(−iξt) /(1+t^2 ))⇒I=∫_(−∞) ^(+∞) g(z)dz=2iπ Re(g,i)  =2iπ (e^ξ /(2i))= π .e^ξ    in both case   ∫_R   (e^(iξx) /(1+x^2 ))dx= π e^(−∣ξ∣) .

$${let}\:\:{put}\:{I}=\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{i}\xi{x}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\: \\ $$$${case}\:\mathrm{1}\:\:{for}\:\xi\:\geqslant\mathrm{0}\:\:\:{let}\:{put}\:\:{f}\left({z}\right)=\:\frac{{e}^{{i}\xi{z}} }{\mathrm{1}+{z}^{\mathrm{2}} }\:{the}\:{poles}\:{of}\:{f}\:{are} \\ $$$${i}\:{and}\:−{i}\left(\:{simples}\right)\:{so}\:{we}\:{have}\: \\ $$$$\int_{−\infty} ^{+\infty} \:{f}\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Re}\left({f},{i}\right)=\mathrm{2}{i}\pi\:\frac{{e}^{{i}\left(\xi{i}\right)} }{\mathrm{2}{i}}=\pi.{e}^{−\xi\:} \:\:\: \\ $$$${case}\:\mathrm{2}\:\:{if}\:\xi<{o}\:\:\:{I}=\:\int_{{R}} \:\:\frac{{e}^{−{i}\xi\left(−{x}\right)} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\:\int_{{R}} \:\frac{{e}^{−{i}\xi{t}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:\left({ch}.−{x}={t}\right)\:\:{then}\: \\ $$$${we}\:{take}\:{g}\left({x}\right)=\:\frac{{e}^{−{i}\xi{t}} }{\mathrm{1}+{t}^{\mathrm{2}} }\Rightarrow{I}=\int_{−\infty} ^{+\infty} {g}\left({z}\right){dz}=\mathrm{2}{i}\pi\:{Re}\left({g},{i}\right) \\ $$$$=\mathrm{2}{i}\pi\:\frac{{e}^{\xi} }{\mathrm{2}{i}}=\:\pi\:.{e}^{\xi} \:\:\:{in}\:{both}\:{case}\:\:\:\int_{{R}} \:\:\frac{{e}^{{i}\xi{x}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\:\pi\:{e}^{−\mid\xi\mid} . \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com