All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 29038 by abdo imad last updated on 03/Feb/18
find∫−∞+∞cos(at)1+t4dt.
Commented by abdo imad last updated on 11/Feb/18
letputI(a)=∫−∞+∞cos(at)1+t4dt=Re(∫−∞+∞eiat1+t4dt)letintroducethecomplexfunctionφ(z)=eiaz1+z4polesofφ?z4=−1⇔z4=eiπifz=reiθ⇒r=1and4θ=(2k+1)π⇒θ=(2k+1)π4sothepolesofφarezk=ei(2k+1)π4andk∈[[o,3]]z0=eiπ4,z1=ei3π4,z2=ei5π4,z3=ek7π4φ(z)=eiaz(z−z0)(z−z1)(z−z2)(z−z3)∫−∞+∞φ(z)dz=2iπ(Re(φ,z0)+Re(φ,z1))Res(φ,z0)=eiaz04z03=−14z0eiaz0Res(φ,z1)=eiaz14z13=−14z1eiaz1butz1=z0−∫−∞+∞φ(z)dz=2iπ(−14)(z0eiaz0+z0−eiaz0−)=−iπ2(z0eiaz0+z0−eiaz9−)....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com