Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29038 by abdo imad last updated on 03/Feb/18

find  ∫_(−∞) ^(+∞)     ((cos(at))/(1+t^4 ))dt.

$${find}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left({at}\right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}. \\ $$

Commented by abdo imad last updated on 11/Feb/18

let put I(a)= ∫^(+∞) _(−∞) ((cos(at))/(1+t^4 ))dt =Re(∫_(−∞) ^(+∞)    (e^(iat) /(1+t^4 ))dt)let  introduce the complex functionϕ(z)= (e^(iaz) /(1+z^4 ))  poles of ϕ? z^4 =−1 ⇔z^4 =e^(iπ)   if z= r e^(iθ) ⇒  r=1  and 4θ =(2k+1)π ⇒θ=(2k+1)(π/4) so the poles of  ϕ are z_k =e^(i(2k+1)(π/4))   and k∈[[o,3]]  z_0 = e^(i(π/4))     ,  z_1 =e^(i((3π)/4))      , z_2 =e^(i((5π)/4))     , z_3 =e^(k((7π)/4))   ϕ(z)= (e^(iaz) /((z−z_0 )(z−z_1 )(z−z_2 )(z−z_3 )))  ∫_(−∞) ^(+∞) ϕ(z)dz=2iπ(Re(ϕ,z_0 ) +Re(ϕ,z_1 ))  Res(ϕ,z_0 )= (e^(iaz_0 ) /(4z_0^  ^3 )) =−(1/4)z_0  e^(iaz_0 )   Res(ϕ,z_1 )= (e^(iaz_1 ) /(4z_1 ^3 ))=−(1/4)z_1  e^(iaz_1 )    but z_1 =z_0 ^−   ∫_(−∞) ^(+∞)   ϕ(z)dz=2iπ(−(1/4))( z_0 e^(iaz_0 )  +z_0 ^−  e^(iaz_0 ^− ) )  =−((iπ)/2)( z_0 e^(iaz_0 )  +z_0 ^−  e^(iaz_9 ^− ) )....be continued....

$${let}\:{put}\:{I}\left({a}\right)=\:\underset{−\infty} {\int}^{+\infty} \frac{{cos}\left({at}\right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\:={Re}\left(\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{iat}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt}\right){let} \\ $$$${introduce}\:{the}\:{complex}\:{function}\varphi\left({z}\right)=\:\frac{{e}^{{iaz}} }{\mathrm{1}+{z}^{\mathrm{4}} } \\ $$$${poles}\:{of}\:\varphi?\:{z}^{\mathrm{4}} =−\mathrm{1}\:\Leftrightarrow{z}^{\mathrm{4}} ={e}^{{i}\pi} \:\:{if}\:{z}=\:{r}\:{e}^{{i}\theta} \Rightarrow \\ $$$${r}=\mathrm{1}\:\:{and}\:\mathrm{4}\theta\:=\left(\mathrm{2}{k}+\mathrm{1}\right)\pi\:\Rightarrow\theta=\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{4}}\:{so}\:{the}\:{poles}\:{of} \\ $$$$\varphi\:{are}\:{z}_{{k}} ={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{4}}} \:\:{and}\:{k}\in\left[\left[{o},\mathrm{3}\right]\right] \\ $$$${z}_{\mathrm{0}} =\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\:\:\:,\:\:{z}_{\mathrm{1}} ={e}^{{i}\frac{\mathrm{3}\pi}{\mathrm{4}}} \:\:\:\:\:,\:{z}_{\mathrm{2}} ={e}^{{i}\frac{\mathrm{5}\pi}{\mathrm{4}}} \:\:\:\:,\:{z}_{\mathrm{3}} ={e}^{{k}\frac{\mathrm{7}\pi}{\mathrm{4}}} \\ $$$$\varphi\left({z}\right)=\:\frac{{e}^{{iaz}} }{\left({z}−{z}_{\mathrm{0}} \right)\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)\left({z}−{z}_{\mathrm{3}} \right)} \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\left({Re}\left(\varphi,{z}_{\mathrm{0}} \right)\:+{Re}\left(\varphi,{z}_{\mathrm{1}} \right)\right) \\ $$$${Res}\left(\varphi,{z}_{\mathrm{0}} \right)=\:\frac{{e}^{{iaz}_{\mathrm{0}} } }{\mathrm{4}{z}_{\mathrm{0}^{} } ^{\mathrm{3}} }\:=−\frac{\mathrm{1}}{\mathrm{4}}{z}_{\mathrm{0}} \:{e}^{{iaz}_{\mathrm{0}} } \\ $$$${Res}\left(\varphi,{z}_{\mathrm{1}} \right)=\:\frac{{e}^{{iaz}_{\mathrm{1}} } }{\mathrm{4}{z}_{\mathrm{1}} ^{\mathrm{3}} }=−\frac{\mathrm{1}}{\mathrm{4}}{z}_{\mathrm{1}} \:{e}^{{iaz}_{\mathrm{1}} } \:\:\:{but}\:{z}_{\mathrm{1}} ={z}_{\mathrm{0}} ^{−} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}=\mathrm{2}{i}\pi\left(−\frac{\mathrm{1}}{\mathrm{4}}\right)\left(\:{z}_{\mathrm{0}} {e}^{{iaz}_{\mathrm{0}} } \:+{z}_{\mathrm{0}} ^{−} \:{e}^{{iaz}_{\mathrm{0}} ^{−} } \right) \\ $$$$=−\frac{{i}\pi}{\mathrm{2}}\left(\:{z}_{\mathrm{0}} {e}^{{iaz}_{\mathrm{0}} } \:+{z}_{\mathrm{0}} ^{−} \:{e}^{{iaz}_{\mathrm{9}} ^{−} } \right)....{be}\:{continued}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com