Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29043 by yesaditya22@gmail.com last updated on 03/Feb/18

∫tan^− (1−sinx/1+sinx) dx

tan(1sinx/1+sinx)dx

Commented by abdo imad last updated on 03/Feb/18

let put I= ∫ arctan(((1−sinx)/(1+sinx)))dx   (arctan=tan^(−1) )we have  ((1−sinx)/(1+sinx))=((1 −cos((π/2)−x))/(1+cos((π/2)−x)))=((2sin^2 ((π/4)−(x/2)))/(2 cos^2 ((π/4) −(x/2))))=tan^2 ((π/4)−(x/2))  I = ∫ arctan(tan^2 ((π/4)−(x/2)))dx  let use the ch.  tan^2 ((π/4)−(x/2))=u ⇔tan((π/4)−(x/2)) =(√u) and  (π/4)−(x/2)=arctan((√u))⇔ x=−2arctan((√u))⇒  dx=−2((1/(2(√u)))/(1+u))= ((−1)/((√u)(1+u))) so  I=−∫ ((artanu)/((√u)(1+u)))du                   ((√u)=t)  I=− ∫   ((arctan(t^2 ))/(t( 1+t^2 )))2t dt=−2∫  ((arctan(t^2 ))/(1+t^2 ))dt +λ and the  integral ∫  ((arctan(t^2 ))/(1+t^2 ))dt be calculated by the parametric  function f(x)= ∫   ((arctan(x(1+t^2 )))/(1+t^2 ))dt by derivation under  ∫....

letputI=arctan(1sinx1+sinx)dx(arctan=tan1)wehave1sinx1+sinx=1cos(π2x)1+cos(π2x)=2sin2(π4x2)2cos2(π4x2)=tan2(π4x2)I=arctan(tan2(π4x2))dxletusethech.tan2(π4x2)=utan(π4x2)=uandπ4x2=arctan(u)x=2arctan(u)dx=212u1+u=1u(1+u)soI=artanuu(1+u)du(u=t)I=arctan(t2)t(1+t2)2tdt=2arctan(t2)1+t2dt+λandtheintegralarctan(t2)1+t2dtbecalculatedbytheparametricfunctionf(x)=arctan(x(1+t2))1+t2dtbyderivationunder....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com