Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 29093 by ajfour last updated on 04/Feb/18

Commented by ajfour last updated on 04/Feb/18

Two rods mutually joined at  hinge H, lie on a frictionless  horizontal surface, are hit by  two point masses inelastically.  (a) Find angular velocity of each  rod just after collision.  (b) Find also the velocity of hinge  just after collision.  Assume hinge H is frictionless  and free to move.

$${Two}\:{rods}\:{mutually}\:{joined}\:{at} \\ $$$${hinge}\:{H},\:{lie}\:{on}\:{a}\:{frictionless} \\ $$$${horizontal}\:{surface},\:{are}\:{hit}\:{by} \\ $$$${two}\:{point}\:{masses}\:{inelastically}. \\ $$$$\left({a}\right)\:{Find}\:{angular}\:{velocity}\:{of}\:{each} \\ $$$${rod}\:{just}\:{after}\:{collision}. \\ $$$$\left({b}\right)\:{Find}\:{also}\:{the}\:{velocity}\:{of}\:{hinge} \\ $$$${just}\:{after}\:{collision}. \\ $$$${Assume}\:{hinge}\:{H}\:{is}\:{frictionless} \\ $$$${and}\:{free}\:{to}\:{move}. \\ $$

Answered by mrW2 last updated on 04/Feb/18

e=coefficient of restitution  v=velocity of hinge after hit (↑)  ω=angular speed of rods (↷↶)  u_1 =velocity of mass after hit  u_0 =velocity of com of rod  u_0 =v+((ωl)/2)  u_2 =velocity of free end of rod  v_2 =v+ωl    v_2 −u_1 =eu  ⇒v+ωl−u_1 =eu  ⇒v_1 =v+ωl−eu    Mu=Mu_1 +mu_0   ⇒Mu=M(v+ωl−eu)+m(v+((ωl)/2))  ⇒(M+m)v+(M+(m/2))ωl=M(1+e)u  ...(i)    Mul=Mu_1 l+((ml^2 )/(12))ω+((ml)/2)v_0   Mul=Mu_1 l+((ml^2 )/(12))ω+((ml)/2)(v+((ωl)/2))   Mul=Mu_1 l+((ml^2 )/3)ω+((mvl)/2)    ⇒Mu=M(v+wl−eu)+((ml)/3)ω+((mv)/2)  ⇒(M+(m/2))v+(M+(m/3))ωl=M(1+e)u   ...(ii)    ⇒[(M+m)(M+(m/3))−(M+(m/2))(M+(m/2))]v=[(M+(m/3))−(M+(m/2))]M(1+e)u  ⇒v=−((2M(1+e)u)/(4M+m))=−((2(1+e)u)/5)    ⇒[(M+m)(M+(m/3))−(M+(m/2))(M+(m/2))]ωl=[(M+m)−(M+(m/2))]M(1+e)u  ⇒^ ω=((6M(1+e)u)/((4M+m)l))=((6(1+e)u)/(5l))

$${e}={coefficient}\:{of}\:{restitution} \\ $$$${v}={velocity}\:{of}\:{hinge}\:{after}\:{hit}\:\left(\uparrow\right) \\ $$$$\omega={angular}\:{speed}\:{of}\:{rods}\:\left(\curvearrowright\curvearrowleft\right) \\ $$$${u}_{\mathrm{1}} ={velocity}\:{of}\:{mass}\:{after}\:{hit} \\ $$$${u}_{\mathrm{0}} ={velocity}\:{of}\:{com}\:{of}\:{rod} \\ $$$${u}_{\mathrm{0}} ={v}+\frac{\omega{l}}{\mathrm{2}} \\ $$$${u}_{\mathrm{2}} ={velocity}\:{of}\:{free}\:{end}\:{of}\:{rod} \\ $$$${v}_{\mathrm{2}} ={v}+\omega{l} \\ $$$$ \\ $$$${v}_{\mathrm{2}} −{u}_{\mathrm{1}} ={eu} \\ $$$$\Rightarrow{v}+\omega{l}−{u}_{\mathrm{1}} ={eu} \\ $$$$\Rightarrow{v}_{\mathrm{1}} ={v}+\omega{l}−{eu} \\ $$$$ \\ $$$${Mu}={Mu}_{\mathrm{1}} +{mu}_{\mathrm{0}} \\ $$$$\Rightarrow{Mu}={M}\left({v}+\omega{l}−{eu}\right)+{m}\left({v}+\frac{\omega{l}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\left({M}+{m}\right){v}+\left({M}+\frac{{m}}{\mathrm{2}}\right)\omega{l}={M}\left(\mathrm{1}+{e}\right){u}\:\:...\left({i}\right) \\ $$$$ \\ $$$${Mul}={Mu}_{\mathrm{1}} {l}+\frac{{ml}^{\mathrm{2}} }{\mathrm{12}}\omega+\frac{{ml}}{\mathrm{2}}{v}_{\mathrm{0}} \\ $$$${Mul}={Mu}_{\mathrm{1}} {l}+\frac{{ml}^{\mathrm{2}} }{\mathrm{12}}\omega+\frac{{ml}}{\mathrm{2}}\left({v}+\frac{\omega{l}}{\mathrm{2}}\right)\: \\ $$$${Mul}={Mu}_{\mathrm{1}} {l}+\frac{{ml}^{\mathrm{2}} }{\mathrm{3}}\omega+\frac{{mvl}}{\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow{Mu}={M}\left({v}+{wl}−{eu}\right)+\frac{{ml}}{\mathrm{3}}\omega+\frac{{mv}}{\mathrm{2}} \\ $$$$\Rightarrow\left({M}+\frac{{m}}{\mathrm{2}}\right){v}+\left({M}+\frac{{m}}{\mathrm{3}}\right)\omega{l}={M}\left(\mathrm{1}+{e}\right){u}\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$$\Rightarrow\left[\left({M}+{m}\right)\left({M}+\frac{{m}}{\mathrm{3}}\right)−\left({M}+\frac{{m}}{\mathrm{2}}\right)\left({M}+\frac{{m}}{\mathrm{2}}\right)\right]{v}=\left[\left({M}+\frac{{m}}{\mathrm{3}}\right)−\left({M}+\frac{{m}}{\mathrm{2}}\right)\right]{M}\left(\mathrm{1}+{e}\right){u} \\ $$$$\Rightarrow{v}=−\frac{\mathrm{2}{M}\left(\mathrm{1}+{e}\right){u}}{\mathrm{4}{M}+{m}}=−\frac{\mathrm{2}\left(\mathrm{1}+{e}\right){u}}{\mathrm{5}} \\ $$$$ \\ $$$$\Rightarrow\left[\left({M}+{m}\right)\left({M}+\frac{{m}}{\mathrm{3}}\right)−\left({M}+\frac{{m}}{\mathrm{2}}\right)\left({M}+\frac{{m}}{\mathrm{2}}\right)\right]\omega{l}=\left[\left({M}+{m}\right)−\left({M}+\frac{{m}}{\mathrm{2}}\right)\right]{M}\left(\mathrm{1}+{e}\right){u} \\ $$$$\overset{} {\Rightarrow}\omega=\frac{\mathrm{6}{M}\left(\mathrm{1}+{e}\right){u}}{\left(\mathrm{4}{M}+{m}\right){l}}=\frac{\mathrm{6}\left(\mathrm{1}+{e}\right){u}}{\mathrm{5}{l}} \\ $$

Commented by ajfour last updated on 04/Feb/18

you have proved it generally enough  Sir, i′d meant completely inelastic  collision. Thank you so much Sir!

$${you}\:{have}\:{proved}\:{it}\:{generally}\:{enough} \\ $$$${Sir},\:{i}'{d}\:{meant}\:{completely}\:{inelastic} \\ $$$${collision}.\:{Thank}\:{you}\:{so}\:{much}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com