Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 29107 by ajfour last updated on 04/Feb/18

Commented by ajfour last updated on 04/Feb/18

Find blue area in terms of a,𝛉,𝛗 .

$${Find}\:{blue}\:{area}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}},\boldsymbol{\theta},\boldsymbol{\phi}\:. \\ $$

Answered by mrW2 last updated on 04/Feb/18

let′s take D as origin and DC as x−axis.  y_G =a tan θ  (y_F /(tan φ))+(y_F /(tan θ))=2a  ⇒y_F =((2a)/((1/(tan φ))+(1/(tan θ))))=((2a)/(((cos φ)/(sin φ))+((cos θ)/(sin θ))))=((2a sin φ sin θ)/(sin (φ+θ)))  ⇒x_F =a−(y_F /(tan θ))=a−((2a sin φ cos θ)/(sin (φ+θ)))=−((a sin (φ−θ))/(sin (φ+θ)))    similarly,  ⇒y_A =((2a sin φ sin 2θ)/(sin (φ+2θ)))  ⇒x_A =−((a sin (φ−2θ))/(sin (φ+2θ)))    Eqn. of CF:  (y/(x−a))=−tan θ  ⇒y+tan θ x=a tan θ    Eqn. of DA:  (y/x)=(((2a sin φ sin 2θ)/(sin (φ+2θ)))/(−((a sin (φ−2θ))/(sin (φ+2θ)))))=−((2 sin φ sin 2θ)/(sin (φ−2θ)))  ⇒y=−((2 sin φ sin 2θ)/(sin (φ−2θ)))x    ⇒[−((2 sin φ sin 2θ)/(sin (φ−2θ)))+tan θ]x_H =a tan θ  ⇒x_H =−((a tan θ)/(((2 sin φ sin 2θ)/(sin (φ−2θ)))−tan θ))  ⇒x_H =−(a/(((4 sin φ cos^2  θ)/(sin (φ−2θ)))−1))    A_(Blue) =(1/2)y_D ∣x_H ∣=(a^2 /2)×((tan θ)/(((4 sin φ cos^2  θ)/(sin (φ−2θ)))−1))  ⇒A_(Blue) =(a^2 /2)×((sin (φ−2θ) tan θ)/(2sin φ +sin (φ+2θ)))

$${let}'{s}\:{take}\:{D}\:{as}\:{origin}\:{and}\:{DC}\:{as}\:{x}−{axis}. \\ $$$${y}_{{G}} ={a}\:\mathrm{tan}\:\theta \\ $$$$\frac{{y}_{{F}} }{\mathrm{tan}\:\phi}+\frac{{y}_{{F}} }{\mathrm{tan}\:\theta}=\mathrm{2}{a} \\ $$$$\Rightarrow{y}_{{F}} =\frac{\mathrm{2}{a}}{\frac{\mathrm{1}}{\mathrm{tan}\:\phi}+\frac{\mathrm{1}}{\mathrm{tan}\:\theta}}=\frac{\mathrm{2}{a}}{\frac{\mathrm{cos}\:\phi}{\mathrm{sin}\:\phi}+\frac{\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta}}=\frac{\mathrm{2}{a}\:\mathrm{sin}\:\phi\:\mathrm{sin}\:\theta}{\mathrm{sin}\:\left(\phi+\theta\right)} \\ $$$$\Rightarrow{x}_{{F}} ={a}−\frac{{y}_{{F}} }{\mathrm{tan}\:\theta}={a}−\frac{\mathrm{2}{a}\:\mathrm{sin}\:\phi\:\mathrm{cos}\:\theta}{\mathrm{sin}\:\left(\phi+\theta\right)}=−\frac{{a}\:\mathrm{sin}\:\left(\phi−\theta\right)}{\mathrm{sin}\:\left(\phi+\theta\right)} \\ $$$$ \\ $$$${similarly}, \\ $$$$\Rightarrow{y}_{{A}} =\frac{\mathrm{2}{a}\:\mathrm{sin}\:\phi\:\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{sin}\:\left(\phi+\mathrm{2}\theta\right)} \\ $$$$\Rightarrow{x}_{{A}} =−\frac{{a}\:\mathrm{sin}\:\left(\phi−\mathrm{2}\theta\right)}{\mathrm{sin}\:\left(\phi+\mathrm{2}\theta\right)} \\ $$$$ \\ $$$${Eqn}.\:{of}\:{CF}: \\ $$$$\frac{{y}}{{x}−{a}}=−\mathrm{tan}\:\theta \\ $$$$\Rightarrow{y}+\mathrm{tan}\:\theta\:{x}={a}\:\mathrm{tan}\:\theta \\ $$$$ \\ $$$${Eqn}.\:{of}\:{DA}: \\ $$$$\frac{{y}}{{x}}=\frac{\frac{\mathrm{2}{a}\:\mathrm{sin}\:\phi\:\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{sin}\:\left(\phi+\mathrm{2}\theta\right)}}{−\frac{{a}\:\mathrm{sin}\:\left(\phi−\mathrm{2}\theta\right)}{\mathrm{sin}\:\left(\phi+\mathrm{2}\theta\right)}}=−\frac{\mathrm{2}\:\mathrm{sin}\:\phi\:\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{sin}\:\left(\phi−\mathrm{2}\theta\right)} \\ $$$$\Rightarrow{y}=−\frac{\mathrm{2}\:\mathrm{sin}\:\phi\:\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{sin}\:\left(\phi−\mathrm{2}\theta\right)}{x} \\ $$$$ \\ $$$$\Rightarrow\left[−\frac{\mathrm{2}\:\mathrm{sin}\:\phi\:\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{sin}\:\left(\phi−\mathrm{2}\theta\right)}+\mathrm{tan}\:\theta\right]{x}_{{H}} ={a}\:\mathrm{tan}\:\theta \\ $$$$\Rightarrow{x}_{{H}} =−\frac{{a}\:\mathrm{tan}\:\theta}{\frac{\mathrm{2}\:\mathrm{sin}\:\phi\:\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{sin}\:\left(\phi−\mathrm{2}\theta\right)}−\mathrm{tan}\:\theta} \\ $$$$\Rightarrow{x}_{{H}} =−\frac{{a}}{\frac{\mathrm{4}\:\mathrm{sin}\:\phi\:\mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{sin}\:\left(\phi−\mathrm{2}\theta\right)}−\mathrm{1}} \\ $$$$ \\ $$$${A}_{{Blue}} =\frac{\mathrm{1}}{\mathrm{2}}{y}_{{D}} \mid{x}_{{H}} \mid=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}×\frac{\mathrm{tan}\:\theta}{\frac{\mathrm{4}\:\mathrm{sin}\:\phi\:\mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{sin}\:\left(\phi−\mathrm{2}\theta\right)}−\mathrm{1}} \\ $$$$\Rightarrow{A}_{{Blue}} =\frac{{a}^{\mathrm{2}} }{\mathrm{2}}×\frac{\mathrm{sin}\:\left(\phi−\mathrm{2}\theta\right)\:\mathrm{tan}\:\theta}{\mathrm{2sin}\:\phi\:+\mathrm{sin}\:\left(\phi+\mathrm{2}\theta\right)} \\ $$

Commented by ajfour last updated on 04/Feb/18

thanks Sir!  I could obtain, taking D as origin  A=((a^2 tan^2 𝛉)/(2[tan 𝛉+(((2tan 𝛗 tan 2𝛉)/(tan 2𝛉−tan 𝛗)))]))  had not rearranged.

$${thanks}\:{Sir}! \\ $$$${I}\:{could}\:{obtain},\:{taking}\:{D}\:{as}\:{origin} \\ $$$${A}=\frac{\boldsymbol{{a}}^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \boldsymbol{\theta}}{\mathrm{2}\left[\mathrm{tan}\:\boldsymbol{\theta}+\left(\frac{\mathrm{2tan}\:\boldsymbol{\phi}\:\mathrm{tan}\:\mathrm{2}\boldsymbol{\theta}}{\mathrm{tan}\:\mathrm{2}\boldsymbol{\theta}−\mathrm{tan}\:\boldsymbol{\phi}}\right)\right]} \\ $$$${had}\:{not}\:{rearranged}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com