All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 29111 by gyugfeet last updated on 04/Feb/18
cos3x.sin2x=1/16(2cosx−cos3x−cos5x)
Commented by abdo imad last updated on 04/Feb/18
anothermethodcos3xsin2x=cosx(cosxsinx)2=14cosx(sin(2x))2=14cosx(1−cos(4x)2)=18(cosx−cosxcos(4x))butcosxcos(4x)=12(cos(5x)+cos(3x))⇒cos3xsin2x=18(cosx−12cos(3x)−12cos(5x))=116(2cosx−cos(3x)−cos(5x)).
Answered by ajfour last updated on 04/Feb/18
cos3x=4cos3x−3cosx2sin2x=1−cos2xso(4cos3x)(2sin2x)=(3cosx+cos3x)(1−cos2x)=3cosx−3cosxcos2x+cos3x−cos3xcos2x=3cosx−32(cosx+cos3x)+cos3x−12(cosx+cos5x)=cosx−12cos3x−12cos5x⇒cos3xsin2x=116(2cosx−cos3x−cos5x).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com