Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 29134 by Tinkutara last updated on 04/Feb/18

Commented by ajfour last updated on 04/Feb/18

Commented by ajfour last updated on 04/Feb/18

let PQ=r_1   , PS=r_2   ,  PR=r_3       (1/r_2 )=((r_1 +r_3 )/(2r_1 r_3 ))       ...(i)  eq. of variable line through P :         y=β+rsin θ  ,  x=α+rcos θ  Q(at_1 ^2 , 2at_1 )   ,  R(at_2 ^2 , 2at_2 )  Q and R lie on line and parabola  ⇒  2at=β+rsin θ          at^2 =α+rcos θ  (β+rsin θ)^2 =4a(α+rcos θ)  ⇒ r^2 sin^2 θ+(2βsin θ−4acos θ)r+β^2 −4aα=0  r_1 , r_3  are roots of this eq.  ⇒   ((2r_1 r_3 )/(r_1 +r_3 ))=((2(β^2 −4aα))/(4acos θ−2βsin θ))  using this in (i)         (1/r_2 )= ((4acos θ−2βsin θ)/(2(β^2 −4aα)))       ...(ii)  or   β^2 −4aα = 2ar_2 cos θ−βr_2 sin θ  but S(h,k) lies on line , so          h=α+r_2 cos θ  ,  k=β+r_2 sin θ  using this in (ii)     𝛃^( 2) −4a𝛂 = 2a(h−𝛂)−𝛃(k−𝛃)  ⇒  2a(h+α)= kβ  so replacing (h,k) by (x,y)        y= (((2a)/𝛃))x+((2a𝛂)/𝛃) .  slope independent of 𝛂 .

$${let}\:{PQ}={r}_{\mathrm{1}} \:\:,\:{PS}={r}_{\mathrm{2}} \:\:,\:\:{PR}={r}_{\mathrm{3}} \\ $$$$\:\:\:\:\frac{\mathrm{1}}{{r}_{\mathrm{2}} }=\frac{{r}_{\mathrm{1}} +{r}_{\mathrm{3}} }{\mathrm{2}{r}_{\mathrm{1}} {r}_{\mathrm{3}} }\:\:\:\:\:\:\:...\left({i}\right) \\ $$$${eq}.\:{of}\:{variable}\:{line}\:{through}\:{P}\:: \\ $$$$\:\:\:\:\:\:\:{y}=\beta+{r}\mathrm{sin}\:\theta\:\:,\:\:{x}=\alpha+{r}\mathrm{cos}\:\theta \\ $$$${Q}\left({at}_{\mathrm{1}} ^{\mathrm{2}} ,\:\mathrm{2}{at}_{\mathrm{1}} \right)\:\:\:,\:\:{R}\left({at}_{\mathrm{2}} ^{\mathrm{2}} ,\:\mathrm{2}{at}_{\mathrm{2}} \right) \\ $$$${Q}\:{and}\:{R}\:{lie}\:{on}\:{line}\:{and}\:{parabola} \\ $$$$\Rightarrow\:\:\mathrm{2}{at}=\beta+{r}\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:{at}^{\mathrm{2}} =\alpha+{r}\mathrm{cos}\:\theta \\ $$$$\left(\beta+{r}\mathrm{sin}\:\theta\right)^{\mathrm{2}} =\mathrm{4}{a}\left(\alpha+{r}\mathrm{cos}\:\theta\right) \\ $$$$\Rightarrow\:{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta+\left(\mathrm{2}\beta\mathrm{sin}\:\theta−\mathrm{4}{a}\mathrm{cos}\:\theta\right){r}+\beta^{\mathrm{2}} −\mathrm{4}{a}\alpha=\mathrm{0} \\ $$$${r}_{\mathrm{1}} ,\:{r}_{\mathrm{3}} \:{are}\:{roots}\:{of}\:{this}\:{eq}. \\ $$$$\Rightarrow\:\:\:\frac{\mathrm{2}{r}_{\mathrm{1}} {r}_{\mathrm{3}} }{{r}_{\mathrm{1}} +{r}_{\mathrm{3}} }=\frac{\mathrm{2}\left(\beta^{\mathrm{2}} −\mathrm{4}{a}\alpha\right)}{\mathrm{4}{a}\mathrm{cos}\:\theta−\mathrm{2}\beta\mathrm{sin}\:\theta} \\ $$$${using}\:{this}\:{in}\:\left({i}\right) \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{1}}{{r}_{\mathrm{2}} }=\:\frac{\mathrm{4}{a}\mathrm{cos}\:\theta−\mathrm{2}\beta\mathrm{sin}\:\theta}{\mathrm{2}\left(\beta^{\mathrm{2}} −\mathrm{4}{a}\alpha\right)}\:\:\:\:\:\:\:...\left({ii}\right) \\ $$$${or}\:\:\:\beta^{\mathrm{2}} −\mathrm{4}{a}\alpha\:=\:\mathrm{2}{ar}_{\mathrm{2}} \mathrm{cos}\:\theta−\beta{r}_{\mathrm{2}} \mathrm{sin}\:\theta \\ $$$${but}\:{S}\left({h},{k}\right)\:{lies}\:{on}\:{line}\:,\:{so} \\ $$$$\:\:\:\:\:\:\:\:{h}=\alpha+{r}_{\mathrm{2}} \mathrm{cos}\:\theta\:\:,\:\:{k}=\beta+{r}_{\mathrm{2}} \mathrm{sin}\:\theta \\ $$$${using}\:{this}\:{in}\:\left({ii}\right) \\ $$$$\:\:\:\boldsymbol{\beta}^{\:\mathrm{2}} −\mathrm{4}\boldsymbol{{a}\alpha}\:=\:\mathrm{2}\boldsymbol{{a}}\left(\boldsymbol{{h}}−\boldsymbol{\alpha}\right)−\boldsymbol{\beta}\left(\boldsymbol{{k}}−\boldsymbol{\beta}\right) \\ $$$$\Rightarrow\:\:\mathrm{2}{a}\left({h}+\alpha\right)=\:{k}\beta \\ $$$${so}\:{replacing}\:\left({h},{k}\right)\:{by}\:\left({x},{y}\right) \\ $$$$\:\:\:\:\:\:\boldsymbol{{y}}=\:\left(\frac{\mathrm{2}\boldsymbol{{a}}}{\boldsymbol{\beta}}\right){x}+\frac{\mathrm{2}\boldsymbol{{a}\alpha}}{\boldsymbol{\beta}}\:. \\ $$$$\boldsymbol{{slope}}\:\boldsymbol{{independent}}\:\boldsymbol{{of}}\:\boldsymbol{\alpha}\:. \\ $$

Commented by Tinkutara last updated on 05/Feb/18

Wonderful Sir! ���� Thanks! ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com