Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 29148 by abdo imad last updated on 04/Feb/18

let give the sequence (u_n ) /u_0 =1 and u_1 =2 and  ∀ n ∈N   2u_(n+2) =3 u_(n+1) −u_n . let give the sequence (v_n ) /  v_n = u_(n+1) −u_n  .  1) prove that (v_n ) is geometric .find v_n in terms of n  2) find u_n  in terms of n.

$${let}\:{give}\:{the}\:{sequence}\:\left({u}_{{n}} \right)\:/{u}_{\mathrm{0}} =\mathrm{1}\:{and}\:{u}_{\mathrm{1}} =\mathrm{2}\:{and} \\ $$$$\forall\:{n}\:\in{N}\:\:\:\mathrm{2}{u}_{{n}+\mathrm{2}} =\mathrm{3}\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} .\:{let}\:{give}\:{the}\:{sequence}\:\left({v}_{{n}} \right)\:/ \\ $$$${v}_{{n}} =\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} \:. \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\left({v}_{{n}} \right)\:{is}\:{geometric}\:.{find}\:{v}_{{n}} {in}\:{terms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{u}_{{n}} \:{in}\:{terms}\:{of}\:{n}. \\ $$

Commented by abdo imad last updated on 08/Feb/18

1)v_(n+1) =u_(n+2)  −u_(n+1) =(3/2)u_(n+1)  −(1/2)u_n  −u_(n+1)   =(1/2)(u_(n+1) −u_n ) =(1/2) v_n  so (v_n ) is a geometric progression  with raizon q=(1/2) ⇒v_n =v_0 q^n   but v_0 =u_1 −u_0 =1  ⇒ v_n =((1/2))^n   2) Σ_(k=0) ^(n−1) v_k = Σ_(k=0) ^(n−1) (u_(k+1) −u_k )=u_1 −u_0  +u_2 −u_1 +...+u_n −u_(n−1)   =u_n  −u_0  ⇒u_n =1+Σ_(k=0) ^(n−1) ((1/2))^k =1+((1−((1/2))^n )/(1−(1/2)))  = 1+2(1−(1/2^n ))= 3 −(1/2^(n−1) )  u_n = 3−(1/2^(n−1) ) .

$$\left.\mathrm{1}\right){v}_{{n}+\mathrm{1}} ={u}_{{n}+\mathrm{2}} \:−{u}_{{n}+\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{2}}{u}_{{n}+\mathrm{1}} \:−\frac{\mathrm{1}}{\mathrm{2}}{u}_{{n}} \:−{u}_{{n}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({u}_{{n}+\mathrm{1}} −{u}_{{n}} \right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:{v}_{{n}} \:{so}\:\left({v}_{{n}} \right)\:{is}\:{a}\:{geometric}\:{progression} \\ $$$${with}\:{raizon}\:{q}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{v}_{{n}} ={v}_{\mathrm{0}} {q}^{{n}} \:\:{but}\:{v}_{\mathrm{0}} ={u}_{\mathrm{1}} −{u}_{\mathrm{0}} =\mathrm{1} \\ $$$$\Rightarrow\:{v}_{{n}} =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$\left.\mathrm{2}\right)\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {v}_{{k}} =\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({u}_{{k}+\mathrm{1}} −{u}_{{k}} \right)={u}_{\mathrm{1}} −{u}_{\mathrm{0}} \:+{u}_{\mathrm{2}} −{u}_{\mathrm{1}} +...+{u}_{{n}} −{u}_{{n}−\mathrm{1}} \\ $$$$={u}_{{n}} \:−{u}_{\mathrm{0}} \:\Rightarrow{u}_{{n}} =\mathrm{1}+\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{k}} =\mathrm{1}+\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} }{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=\:\mathrm{1}+\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)=\:\mathrm{3}\:−\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} } \\ $$$${u}_{{n}} =\:\mathrm{3}−\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com