Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 29165 by abdo imad last updated on 04/Feb/18

give the factorization inside C[x] for  p(x)=  x^4  −((1−i(√3))/2)  .

$${give}\:{the}\:{factorization}\:{inside}\:{C}\left[{x}\right]\:{for} \\ $$$${p}\left({x}\right)=\:\:{x}^{\mathrm{4}} \:−\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:. \\ $$

Commented by abdo imad last updated on 06/Feb/18

let find the roots lf p(x) p(z)=0 ⇔z^4 =((1−i(√3))/2) but  1−i(√3)=2( (1/2)−i((√3)/2))= 2 e^(−i(π/3))  let put z=r e^(iθ)   p(z)=0⇔ r^4 =2  and 4θ=−(π/3) +2kπ     k∈[[0,3]]  θ_k =−(π/(12)) +((kπ)/2)   so the roots are z_k =^4 (√2) e^(i(−(π/(12))+((kπ)/2)))   k∈[[0,3]]its  clear that the leading coefficient is 1 so  p(x)= Π_(k=0) ^3  (x−z_k )=(x−z_0 )(x−z_1 )(x−z_2 )(x−z_3 )with  z_0 =^4 (√2) e^(−i(π/(12)))    ,  z_1 =^4 (√2) e^(i((5π)/(12)))   , z_2 =^4 (√2) e^(i((11π)/(12)))  ,z_3 =^4 (√2) e^(i((17π)/(12)))  .

$${let}\:{find}\:{the}\:{roots}\:{lf}\:{p}\left({x}\right)\:{p}\left({z}\right)=\mathrm{0}\:\Leftrightarrow{z}^{\mathrm{4}} =\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:{but} \\ $$$$\mathrm{1}−{i}\sqrt{\mathrm{3}}=\mathrm{2}\left(\:\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\:\mathrm{2}\:{e}^{−{i}\frac{\pi}{\mathrm{3}}} \:{let}\:{put}\:{z}={r}\:{e}^{{i}\theta} \\ $$$${p}\left({z}\right)=\mathrm{0}\Leftrightarrow\:{r}^{\mathrm{4}} =\mathrm{2}\:\:{and}\:\mathrm{4}\theta=−\frac{\pi}{\mathrm{3}}\:+\mathrm{2}{k}\pi\:\:\:\:\:{k}\in\left[\left[\mathrm{0},\mathrm{3}\right]\right] \\ $$$$\theta_{{k}} =−\frac{\pi}{\mathrm{12}}\:+\frac{{k}\pi}{\mathrm{2}}\:\:\:{so}\:{the}\:{roots}\:{are}\:{z}_{{k}} =^{\mathrm{4}} \sqrt{\mathrm{2}}\:{e}^{{i}\left(−\frac{\pi}{\mathrm{12}}+\frac{{k}\pi}{\mathrm{2}}\right)} \:\:{k}\in\left[\left[\mathrm{0},\mathrm{3}\right]\right]{its} \\ $$$${clear}\:{that}\:{the}\:{leading}\:{coefficient}\:{is}\:\mathrm{1}\:{so} \\ $$$${p}\left({x}\right)=\:\prod_{{k}=\mathrm{0}} ^{\mathrm{3}} \:\left({x}−{z}_{{k}} \right)=\left({x}−{z}_{\mathrm{0}} \right)\left({x}−{z}_{\mathrm{1}} \right)\left({x}−{z}_{\mathrm{2}} \right)\left({x}−{z}_{\mathrm{3}} \right){with} \\ $$$${z}_{\mathrm{0}} =^{\mathrm{4}} \sqrt{\mathrm{2}}\:{e}^{−{i}\frac{\pi}{\mathrm{12}}} \:\:\:,\:\:{z}_{\mathrm{1}} =^{\mathrm{4}} \sqrt{\mathrm{2}}\:{e}^{{i}\frac{\mathrm{5}\pi}{\mathrm{12}}} \:\:,\:{z}_{\mathrm{2}} =\:^{\mathrm{4}} \sqrt{\mathrm{2}}\:{e}^{{i}\frac{\mathrm{11}\pi}{\mathrm{12}}} \:,{z}_{\mathrm{3}} =^{\mathrm{4}} \sqrt{\mathrm{2}}\:{e}^{{i}\frac{\mathrm{17}\pi}{\mathrm{12}}} \:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com