All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 29173 by abdo imad last updated on 04/Feb/18
findcos(5α)intermsofcosαthenfindthevalueofcos(π10).
Answered by ajfour last updated on 05/Feb/18
cos5α=cos3αcos2α−sin3αsin2α=(4cos3α−3cosα)(2cos2α−1)−(3sinα−4sin3α)(2sinαcosα)=cosα(4cos2α−3)(2cos2α−1)−2cosα(1−cos2α)(4cos2α−1)=cosα(8cos4α−10cos2α+3+8cos4α−10cos2α+2)=cosα(16cos4α−20cos2α+5)letα=π2andcos2α=t⇒16t2−20t+5=016(t−58)2=254−5t=cos2α=58+58⇒cosα=cosπ10=5+58.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com