Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 29209 by tawa tawa last updated on 05/Feb/18

Commented by tawa tawa last updated on 05/Feb/18

please help with.  4, 5, 6, 7

$$\mathrm{please}\:\mathrm{help}\:\mathrm{with}.\:\:\mathrm{4},\:\mathrm{5},\:\mathrm{6},\:\mathrm{7} \\ $$

Commented by ajfour last updated on 05/Feb/18

Commented by ajfour last updated on 05/Feb/18

Q.4)   let charge at time t be Q.  And the initial charge Q_0 .  Kirchoff′s voltage law gives     (Q/C)−iR=0  ⇒   (Q/(RC)) = −i = (dQ/dt)  ⇒    ∫_Q_0  ^(  Q)  (dQ/Q) = −∫_0 ^(  t) (dt/(RC))  or   ln (Q/Q_0 ) = −(t/(RC))  ⇒   Q= Q_0 e^(−(t/(RC)))     .    Q.5)                   v_0 = (Q_0 /C)   ,   v = (Q/C)  So     from result of Q.(4)          v = v_0 e^(−(t/(RC)))    .

$$\left.{Q}.\mathrm{4}\right) \\ $$$$\:{let}\:{charge}\:{at}\:{time}\:{t}\:{be}\:{Q}. \\ $$$${And}\:{the}\:{initial}\:{charge}\:{Q}_{\mathrm{0}} . \\ $$$${Kirchoff}'{s}\:{voltage}\:{law}\:{gives} \\ $$$$\:\:\:\frac{{Q}}{{C}}−{iR}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\frac{{Q}}{{RC}}\:=\:−{i}\:=\:\frac{{dQ}}{{dt}} \\ $$$$\Rightarrow\:\:\:\:\int_{{Q}_{\mathrm{0}} } ^{\:\:{Q}} \:\frac{{dQ}}{{Q}}\:=\:−\int_{\mathrm{0}} ^{\:\:{t}} \frac{{dt}}{{RC}} \\ $$$${or}\:\:\:\mathrm{ln}\:\frac{{Q}}{{Q}_{\mathrm{0}} }\:=\:−\frac{{t}}{{RC}} \\ $$$$\Rightarrow\:\:\:{Q}=\:{Q}_{\mathrm{0}} {e}^{−\frac{{t}}{{RC}}} \:\:\:\:. \\ $$$$ \\ $$$$\left.{Q}.\mathrm{5}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{v}_{\mathrm{0}} =\:\frac{{Q}_{\mathrm{0}} }{{C}}\:\:\:,\:\:\:{v}\:=\:\frac{{Q}}{{C}} \\ $$$${So}\:\:\:\:\:{from}\:{result}\:{of}\:{Q}.\left(\mathrm{4}\right) \\ $$$$\:\:\:\:\:\:\:\:{v}\:=\:{v}_{\mathrm{0}} {e}^{−\frac{{t}}{{RC}}} \:\:\:. \\ $$

Commented by tawa tawa last updated on 05/Feb/18

God bless you sir. i really appreciate

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate} \\ $$

Answered by ajfour last updated on 05/Feb/18

Q.6)    ((Ldi)/dt)+iR = Ecos ωt  ⇒     (di/dt) +((iR)/L) = (E/L)cos ωt  integrating factor for the linear  differential equation is       e^(∫(R/L)dt)  =e^(Rt/L)   so     i(e^(Rt/L) )=(E/L)∫e^(Rt/L) cos ωt  =(E/L)[(((sin ωt)/ω))e^(Rt/L) −(R/(ωL))∫e^(Rt/L) sin ωtdt ]+c  =(E/L){((e^(Rt/L) sin ωt)/ω)−(R/(ωL))[−((e^(Rt/L) cos ωt)/ω)+(R/(ωL))∫e^(Rt/L) cos ωtdt ]}+c_1   =(E/L){((e^(Rt/L) sin ωt)/ω)−(R/(ωL))[−((e^(Rt/L) cos ωt)/ω)+(R/(ωL))×(L/E)(ie^(Rt/L) )]}+c_1   ⇒ i(e^(Rt/L) )[1+(R^2 /(ω^2 L^2 ))]=(E/(ωL))(e^(Rt/L) )[sin ωt+(R/(ωL))cos ωt]+c_1   ⇒ i = (E/(𝛚^2 L^2 +R^2 ))(𝛚Lsin 𝛚t+Rcos 𝛚t)+c_2 e^(−Rt/L)   if i=0  at t=0     0=((ER)/(ω^2 L^2 +R^2 ))+c_2   ⇒   i=(E/(ω^2 L^2 +R^2 ))(ωLsin ωt+Rcos ωt−Re^(−Rt/L) ) .

$$\left.{Q}.\mathrm{6}\right)\:\:\:\:\frac{{Ldi}}{{dt}}+{iR}\:=\:{E}\mathrm{cos}\:\omega{t} \\ $$$$\Rightarrow\:\:\:\:\:\frac{{di}}{{dt}}\:+\frac{{iR}}{{L}}\:=\:\frac{{E}}{{L}}\mathrm{cos}\:\omega{t} \\ $$$${integrating}\:{factor}\:{for}\:{the}\:{linear} \\ $$$${differential}\:{equation}\:{is} \\ $$$$\:\:\:\:\:{e}^{\int\frac{{R}}{{L}}{dt}} \:={e}^{{Rt}/{L}} \\ $$$${so}\:\:\:\:\:{i}\left({e}^{{Rt}/{L}} \right)=\frac{{E}}{{L}}\int{e}^{{Rt}/{L}} \mathrm{cos}\:\omega{t} \\ $$$$=\frac{{E}}{{L}}\left[\left(\frac{\mathrm{sin}\:\omega{t}}{\omega}\right){e}^{{Rt}/{L}} −\frac{{R}}{\omega{L}}\int{e}^{{Rt}/{L}} \mathrm{sin}\:\omega{tdt}\:\right]+{c} \\ $$$$=\frac{{E}}{{L}}\left\{\frac{{e}^{{Rt}/{L}} \mathrm{sin}\:\omega{t}}{\omega}−\frac{{R}}{\omega{L}}\left[−\frac{{e}^{{Rt}/{L}} \mathrm{cos}\:\omega{t}}{\omega}+\frac{{R}}{\omega{L}}\int{e}^{{Rt}/{L}} \mathrm{cos}\:\omega{tdt}\:\right]\right\}+{c}_{\mathrm{1}} \\ $$$$=\frac{{E}}{{L}}\left\{\frac{{e}^{{Rt}/{L}} \mathrm{sin}\:\omega{t}}{\omega}−\frac{{R}}{\omega{L}}\left[−\frac{{e}^{{Rt}/{L}} \mathrm{cos}\:\omega{t}}{\omega}+\frac{{R}}{\omega{L}}×\frac{{L}}{{E}}\left({ie}^{{Rt}/{L}} \right)\right]\right\}+{c}_{\mathrm{1}} \\ $$$$\Rightarrow\:{i}\left({e}^{{Rt}/{L}} \right)\left[\mathrm{1}+\frac{{R}^{\mathrm{2}} }{\omega^{\mathrm{2}} {L}^{\mathrm{2}} }\right]=\frac{{E}}{\omega{L}}\left({e}^{{Rt}/{L}} \right)\left[\mathrm{sin}\:\omega{t}+\frac{{R}}{\omega{L}}\mathrm{cos}\:\omega{t}\right]+{c}_{\mathrm{1}} \\ $$$$\Rightarrow\:\boldsymbol{{i}}\:=\:\frac{\boldsymbol{{E}}}{\boldsymbol{\omega}^{\mathrm{2}} \boldsymbol{{L}}^{\mathrm{2}} +\boldsymbol{{R}}^{\mathrm{2}} }\left(\boldsymbol{\omega{L}}\mathrm{sin}\:\boldsymbol{\omega{t}}+\boldsymbol{{R}}\mathrm{cos}\:\boldsymbol{\omega{t}}\right)+\boldsymbol{{c}}_{\mathrm{2}} \boldsymbol{{e}}^{−\boldsymbol{{R}}{t}/\boldsymbol{{L}}} \\ $$$${if}\:\boldsymbol{{i}}=\mathrm{0}\:\:{at}\:{t}=\mathrm{0} \\ $$$$\:\:\:\mathrm{0}=\frac{{ER}}{\omega^{\mathrm{2}} {L}^{\mathrm{2}} +{R}^{\mathrm{2}} }+{c}_{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\boldsymbol{{i}}=\frac{{E}}{\omega^{\mathrm{2}} {L}^{\mathrm{2}} +{R}^{\mathrm{2}} }\left(\omega{L}\mathrm{sin}\:\omega{t}+{R}\mathrm{cos}\:\omega{t}−{Re}^{−{Rt}/{L}} \right)\:. \\ $$

Commented by tawa tawa last updated on 05/Feb/18

wow, God bless you sir.

$$\mathrm{wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com