Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 29249 by ajfour last updated on 05/Feb/18

Commented by ajfour last updated on 05/Feb/18

Find side lengths a,b,c  of △ABC  in terms of r_1 , r_2 , and r_3 .  We may call r_1  as p,   r_2  as q and r_3  as r for the sake of  convinience.

$${Find}\:{side}\:{lengths}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}\:\:{of}\:\bigtriangleup{ABC} \\ $$$${in}\:{terms}\:{of}\:\boldsymbol{{r}}_{\mathrm{1}} ,\:\boldsymbol{{r}}_{\mathrm{2}} ,\:{and}\:\boldsymbol{{r}}_{\mathrm{3}} . \\ $$$${We}\:{may}\:{call}\:{r}_{\mathrm{1}} \:{as}\:\boldsymbol{{p}},\: \\ $$$${r}_{\mathrm{2}} \:{as}\:\boldsymbol{{q}}\:{and}\:{r}_{\mathrm{3}} \:{as}\:\boldsymbol{{r}}\:{for}\:{the}\:{sake}\:{of} \\ $$$${convinience}. \\ $$

Answered by mrW2 last updated on 05/Feb/18

Commented by mrW2 last updated on 05/Feb/18

DE=r+p  EF=p+q  FD=q+r  α=sin^(−1) (((p−q)/(p+q)))  β=sin^(−1) (((q−r)/(q+r)))  γ=sin^(−1) (((r−p)/(r+p)))    In ΔDEF we have  cos ∠DEF=(((p+q)^2 +(r+p)^2 −(q+r)^2 )/(2(p+q)(r+p)))  ⇒cos ∠DEF=((p(p+q)+r(p−q))/((p+q)(r+p)))  ⇒u=∠DEF=cos^(−1) [((p(p+q)+r(p−q))/((p+q)(r+p)))]  similarly:  ⇒cos ∠EFD=((q(q+r)+p(q−r))/((q+r)(p+q)))  ⇒v=∠EFD=cos^(−1) [((q(q+r)+p(q−r))/((q+r)(p+q)))]  ⇒cos ∠FDE=((r(r+p)+q(r−p))/((r+p)(q+r)))  ⇒w=∠FDE=cos^(−1) [((r(r+p)+q(r−p))/((r+p)(q+r)))]    ∠B=u−α+γ=cos^(−1) [((p(p+q)+r(p−q))/((p+q)(r+p)))]−sin^(−1) (((p−q)/(p+q)))+sin^(−1) (((r−p)/(r+p)))  ∠C=v−β+α=cos^(−1) [((q(q+r)+p(q−r))/((q+r)(p+q)))]−sin^(−1) (((q−r)/(q+r)))+sin^(−1) (((p−q)/(p+q)))  ∠A=w−γ+β=cos^(−1) [((r(r+p)+q(r−p))/((r+p)(q+r)))]−sin^(−1) (((r−p)/(r+p)))+sin^(−1) (((q−r)/(q+r)))    a=(p/(tan (B/2)))+(√((p+q)^2 −(p−q)^2 ))+(q/(tan (C/2)))  ⇒a=((p(1+cos B))/(sin B))+2(√(pq))+((q(1+cos C))/(sin C))  ⇒b=((q(1+cos C))/(sin C))+2(√(qr))+((r(1+cos A))/(sin A))  ⇒c=((r(1+cos A))/(sin A))+2(√(rp))+((p(1+cos B))/(sin B))

$${DE}={r}+{p} \\ $$$${EF}={p}+{q} \\ $$$${FD}={q}+{r} \\ $$$$\alpha=\mathrm{sin}^{−\mathrm{1}} \left(\frac{{p}−{q}}{{p}+{q}}\right) \\ $$$$\beta=\mathrm{sin}^{−\mathrm{1}} \left(\frac{{q}−{r}}{{q}+{r}}\right) \\ $$$$\gamma=\mathrm{sin}^{−\mathrm{1}} \left(\frac{{r}−{p}}{{r}+{p}}\right) \\ $$$$ \\ $$$${In}\:\Delta{DEF}\:{we}\:{have} \\ $$$$\mathrm{cos}\:\angle{DEF}=\frac{\left({p}+{q}\right)^{\mathrm{2}} +\left({r}+{p}\right)^{\mathrm{2}} −\left({q}+{r}\right)^{\mathrm{2}} }{\mathrm{2}\left({p}+{q}\right)\left({r}+{p}\right)} \\ $$$$\Rightarrow\mathrm{cos}\:\angle{DEF}=\frac{{p}\left({p}+{q}\right)+{r}\left({p}−{q}\right)}{\left({p}+{q}\right)\left({r}+{p}\right)} \\ $$$$\Rightarrow{u}=\angle{DEF}=\mathrm{cos}^{−\mathrm{1}} \left[\frac{{p}\left({p}+{q}\right)+{r}\left({p}−{q}\right)}{\left({p}+{q}\right)\left({r}+{p}\right)}\right] \\ $$$${similarly}: \\ $$$$\Rightarrow\mathrm{cos}\:\angle{EFD}=\frac{{q}\left({q}+{r}\right)+{p}\left({q}−{r}\right)}{\left({q}+{r}\right)\left({p}+{q}\right)} \\ $$$$\Rightarrow{v}=\angle{EFD}=\mathrm{cos}^{−\mathrm{1}} \left[\frac{{q}\left({q}+{r}\right)+{p}\left({q}−{r}\right)}{\left({q}+{r}\right)\left({p}+{q}\right)}\right] \\ $$$$\Rightarrow\mathrm{cos}\:\angle{FDE}=\frac{{r}\left({r}+{p}\right)+{q}\left({r}−{p}\right)}{\left({r}+{p}\right)\left({q}+{r}\right)} \\ $$$$\Rightarrow{w}=\angle{FDE}=\mathrm{cos}^{−\mathrm{1}} \left[\frac{{r}\left({r}+{p}\right)+{q}\left({r}−{p}\right)}{\left({r}+{p}\right)\left({q}+{r}\right)}\right] \\ $$$$ \\ $$$$\angle{B}={u}−\alpha+\gamma=\mathrm{cos}^{−\mathrm{1}} \left[\frac{{p}\left({p}+{q}\right)+{r}\left({p}−{q}\right)}{\left({p}+{q}\right)\left({r}+{p}\right)}\right]−\mathrm{sin}^{−\mathrm{1}} \left(\frac{{p}−{q}}{{p}+{q}}\right)+\mathrm{sin}^{−\mathrm{1}} \left(\frac{{r}−{p}}{{r}+{p}}\right) \\ $$$$\angle{C}={v}−\beta+\alpha=\mathrm{cos}^{−\mathrm{1}} \left[\frac{{q}\left({q}+{r}\right)+{p}\left({q}−{r}\right)}{\left({q}+{r}\right)\left({p}+{q}\right)}\right]−\mathrm{sin}^{−\mathrm{1}} \left(\frac{{q}−{r}}{{q}+{r}}\right)+\mathrm{sin}^{−\mathrm{1}} \left(\frac{{p}−{q}}{{p}+{q}}\right) \\ $$$$\angle{A}={w}−\gamma+\beta=\mathrm{cos}^{−\mathrm{1}} \left[\frac{{r}\left({r}+{p}\right)+{q}\left({r}−{p}\right)}{\left({r}+{p}\right)\left({q}+{r}\right)}\right]−\mathrm{sin}^{−\mathrm{1}} \left(\frac{{r}−{p}}{{r}+{p}}\right)+\mathrm{sin}^{−\mathrm{1}} \left(\frac{{q}−{r}}{{q}+{r}}\right) \\ $$$$ \\ $$$${a}=\frac{{p}}{\mathrm{tan}\:\frac{{B}}{\mathrm{2}}}+\sqrt{\left({p}+{q}\right)^{\mathrm{2}} −\left({p}−{q}\right)^{\mathrm{2}} }+\frac{{q}}{\mathrm{tan}\:\frac{{C}}{\mathrm{2}}} \\ $$$$\Rightarrow{a}=\frac{{p}\left(\mathrm{1}+\mathrm{cos}\:{B}\right)}{\mathrm{sin}\:{B}}+\mathrm{2}\sqrt{{pq}}+\frac{{q}\left(\mathrm{1}+\mathrm{cos}\:{C}\right)}{\mathrm{sin}\:{C}} \\ $$$$\Rightarrow{b}=\frac{{q}\left(\mathrm{1}+\mathrm{cos}\:{C}\right)}{\mathrm{sin}\:{C}}+\mathrm{2}\sqrt{{qr}}+\frac{{r}\left(\mathrm{1}+\mathrm{cos}\:{A}\right)}{\mathrm{sin}\:{A}} \\ $$$$\Rightarrow{c}=\frac{{r}\left(\mathrm{1}+\mathrm{cos}\:{A}\right)}{\mathrm{sin}\:{A}}+\mathrm{2}\sqrt{{rp}}+\frac{{p}\left(\mathrm{1}+\mathrm{cos}\:{B}\right)}{\mathrm{sin}\:{B}} \\ $$

Commented by ajfour last updated on 06/Feb/18

Amazing Sir, thank you !

$${Amazing}\:{Sir},\:{thank}\:{you}\:! \\ $$

Commented by mrW2 last updated on 06/Feb/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com