Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 29254 by Tinkutara last updated on 06/Feb/18

Commented by Tinkutara last updated on 06/Feb/18

Find the exact velocity vectors with x and y components. e=1/3 Theta=60° m=3 kg M=8 kg L=6 m u=25 m/s Tell me your final answers so that I can check whether its correct or not.

Answered by mrW2 last updated on 06/Feb/18

u_(1x) ,u_(1y) =velocity of particle  u_(2x) ,u_(2y) =velocity of rod  u_(1y) −u_(2y) =u sin θ  u_(2x) −u_(1x) =eu cos θ    mu_(1x) +Mu_(2x) =mu cos θ  ⇒mu_(1x) +M(eu cos θ+u_(1x) )=mu cos θ  ⇒(M+m)u_(1x) =u cos θ(m−Me)  ⇒u_(1x) =(((m−Me) cos θ u)/(M+m))  ⇒u_(2x) =(((1+e)m cos θ)/(M+m)) u    mu_(1y) +Mu_(2y) =mu sin θ  ⇒mu_(1y) +M(u_(1y) −u sin θ)=mu sin θ  ⇒u_(1y) =u sin θ  ⇒u_(2y) =0    e=(1/3)  θ=60°  m=3 kg  M=8 kg  u=25 m/s  ⇒u_(1x) =(((3−(8/3))×(1/2)×25)/(8+3))=((25)/(66))≈0.38 m/s  ⇒u_(1y) =25×((√3)/2)≈21.7 m/s    ⇒u_(2x) =(((1+(1/3))×3×(1/2))/(8+3))×25=((50)/(11))≈4.5 m/s  ⇒u_(2y) =0

$${u}_{\mathrm{1}{x}} ,{u}_{\mathrm{1}{y}} ={velocity}\:{of}\:{particle} \\ $$$${u}_{\mathrm{2}{x}} ,{u}_{\mathrm{2}{y}} ={velocity}\:{of}\:{rod} \\ $$$${u}_{\mathrm{1}{y}} −{u}_{\mathrm{2}{y}} ={u}\:\mathrm{sin}\:\theta \\ $$$${u}_{\mathrm{2}{x}} −{u}_{\mathrm{1}{x}} ={eu}\:\mathrm{cos}\:\theta \\ $$$$ \\ $$$${mu}_{\mathrm{1}{x}} +{Mu}_{\mathrm{2}{x}} ={mu}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{mu}_{\mathrm{1}{x}} +{M}\left({eu}\:\mathrm{cos}\:\theta+{u}_{\mathrm{1}{x}} \right)={mu}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow\left({M}+{m}\right){u}_{\mathrm{1}{x}} ={u}\:\mathrm{cos}\:\theta\left({m}−{Me}\right) \\ $$$$\Rightarrow{u}_{\mathrm{1}{x}} =\frac{\left({m}−{Me}\right)\:\mathrm{cos}\:\theta\:{u}}{{M}+{m}} \\ $$$$\Rightarrow{u}_{\mathrm{2}{x}} =\frac{\left(\mathrm{1}+{e}\right){m}\:\mathrm{cos}\:\theta}{{M}+{m}}\:{u} \\ $$$$ \\ $$$${mu}_{\mathrm{1}{y}} +{Mu}_{\mathrm{2}{y}} ={mu}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{mu}_{\mathrm{1}{y}} +{M}\left({u}_{\mathrm{1}{y}} −{u}\:\mathrm{sin}\:\theta\right)={mu}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{u}_{\mathrm{1}{y}} ={u}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{u}_{\mathrm{2}{y}} =\mathrm{0} \\ $$$$ \\ $$$${e}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\theta=\mathrm{60}° \\ $$$${m}=\mathrm{3}\:{kg} \\ $$$${M}=\mathrm{8}\:{kg} \\ $$$${u}=\mathrm{25}\:{m}/{s} \\ $$$$\Rightarrow{u}_{\mathrm{1}{x}} =\frac{\left(\mathrm{3}−\frac{\mathrm{8}}{\mathrm{3}}\right)×\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{25}}{\mathrm{8}+\mathrm{3}}=\frac{\mathrm{25}}{\mathrm{66}}\approx\mathrm{0}.\mathrm{38}\:{m}/{s} \\ $$$$\Rightarrow{u}_{\mathrm{1}{y}} =\mathrm{25}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\approx\mathrm{21}.\mathrm{7}\:{m}/{s} \\ $$$$ \\ $$$$\Rightarrow{u}_{\mathrm{2}{x}} =\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)×\mathrm{3}×\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{8}+\mathrm{3}}×\mathrm{25}=\frac{\mathrm{50}}{\mathrm{11}}\approx\mathrm{4}.\mathrm{5}\:{m}/{s} \\ $$$$\Rightarrow{u}_{\mathrm{2}{y}} =\mathrm{0} \\ $$

Commented by Tinkutara last updated on 06/Feb/18

Why momentum is conserved in x direction?

Commented by mrW2 last updated on 06/Feb/18

I don't understand your doubt. The momentum should be conserved in every direction, so why not in x direction?

Commented by Tinkutara last updated on 06/Feb/18

But momentum is not conserved in that direction in which impulsive forces act so that's why I am asking this.

Commented by mrW2 last updated on 06/Feb/18

In our case no force acts both in x and  in y direction.

$${In}\:{our}\:{case}\:{no}\:{force}\:{acts}\:{both}\:{in}\:{x}\:{and} \\ $$$${in}\:{y}\:{direction}. \\ $$

Commented by Tinkutara last updated on 07/Feb/18

Thank you very much Sir! I got the answer.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com