All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 29320 by Glorious Man last updated on 07/Feb/18
Findtheprincipalargumentof−1+2i1−3i.
Commented by abdo imad last updated on 08/Feb/18
∣−1+2i∣=5and−1+2i=5(−15+i25)=reiθ⇒r=5andcosθ=−15andsinθ=25⇒tanθ=−2⇒θ=−actan2∣1−3i∣=10and1−3i=10(110−310i)=reiφ⇒r=10andcosφ=110andsinφ=−310⇒tanφ=−3⇒φ=−arctan3soArg(−1+2i1−3i)≡θ−φ[2π]≡arctan3−arctan2[2π].
Terms of Service
Privacy Policy
Contact: info@tinkutara.com