Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 29322 by ajfour last updated on 07/Feb/18

Commented by ajfour last updated on 07/Feb/18

Find acceleration of sphere as  a function of angle θ.  System is released at θ= θ_0  (<90°) ;  (All surfaces are frictionless).

Findaccelerationofsphereasafunctionofangleθ.Systemisreleasedatθ=θ0(<90°);(Allsurfacesarefrictionless).

Commented by ajfour last updated on 07/Feb/18

Please solve or check my solution   mrW  Sir.

PleasesolveorcheckmysolutionmrWSir.

Commented by ajfour last updated on 07/Feb/18

Commented by ajfour last updated on 07/Feb/18

x=Rcot (θ/2)  v=−((ωR)/2)cosec^2 (θ/2)  ⇒  v^2 =((𝛚^2 R^2 )/4)cosec^4 (θ/2)   ....(i)  a=(dv/dt)= −((αR)/2)cosec^2 (θ/2)           +((ω^2 R)/2)cosec^2 (θ/2)cot (θ/2)     ...(ii)  Nsin θ = ma    ....(iii)  NRcot (θ/2)−((MgLcos θ)/2) =(((ML^2 )/3))α                                            ⇒ α=(3/(ML^2 ))(((maRcot (θ/2))/(sin θ))−((MgLcos θ)/2))                                            .....(iv)  ((MgL)/2)(sin θ_0 −sin θ)=(1/2)mv^2 +(1/2)(((ML^2 )/3))ω^2   using (i):  ((MgL)/2)(sin θ_0 −sin θ)=((mω^2 R^2 )/8)cosec^4 (θ/2)                                            +((ML^2 ω^2 )/6)  ω^2 =((((MgL)/2)(sin θ_0 −sin θ))/(((ML^2 )/6)+((mR^2 )/8)cosec^4 (θ/2)))   ....(A)  Using  eq. (A), (iii), (iv) in eq.(ii)  a=(R/2)cosec^2 (θ/2)((3/(ML^2 )))(((MgLcos θ)/2)−((maRcot (θ/2))/(sin θ)))       +(R/2)cosec^2 (θ/2)cot (θ/2)[((((MgL)/2)(sin θ_0 −sin θ))/(((ML^2 )/6)+((mR^2 )/8)cosec^4 (θ/2)))]    a[1+((3mR^2 cosec^2 (θ/2)cot (θ/2))/(2ML^2 sin θ))]=              (R/2)cosec^2 (θ/2)[((3gcos θ)/(2L))+((((MgL)/2)(sin θ_0 −sin θ)cot (θ/2))/(((ML^2 )/6)+((mR^2 )/8)cosec^4 (θ/2)))]  .

x=Rcotθ2v=ωR2cosec2θ2v2=ω2R24cosec4θ2....(i)a=dvdt=αR2cosec2θ2+ω2R2cosec2θ2cotθ2...(ii)Nsinθ=ma....(iii)NRcotθ2MgLcosθ2=(ML23)αα=3ML2(maRcotθ2sinθMgLcosθ2).....(iv)MgL2(sinθ0sinθ)=12mv2+12(ML23)ω2using(i):MgL2(sinθ0sinθ)=mω2R28cosec4θ2+ML2ω26ω2=MgL2(sinθ0sinθ)ML26+mR28cosec4θ2....(A)Usingeq.(A),(iii),(iv)ineq.(ii)a=R2cosec2θ2(3ML2)(MgLcosθ2maRcotθ2sinθ)+R2cosec2θ2cotθ2[MgL2(sinθ0sinθ)ML26+mR28cosec4θ2]a[1+3mR2cosec2θ2cotθ22ML2sinθ]=R2cosec2θ2[3gcosθ2L+MgL2(sinθ0sinθ)cotθ2ML26+mR28cosec4θ2].

Commented by mrW2 last updated on 07/Feb/18

solution is correct sir!

solutioniscorrectsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com