Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 29322 by ajfour last updated on 07/Feb/18

Commented by ajfour last updated on 07/Feb/18

Find acceleration of sphere as  a function of angle θ.  System is released at θ= θ_0  (<90°) ;  (All surfaces are frictionless).

$${Find}\:{acceleration}\:{of}\:{sphere}\:{as} \\ $$$${a}\:{function}\:{of}\:{angle}\:\theta. \\ $$$${System}\:{is}\:{released}\:{at}\:\theta=\:\theta_{\mathrm{0}} \:\left(<\mathrm{90}°\right)\:; \\ $$$$\left({All}\:{surfaces}\:{are}\:{frictionless}\right). \\ $$

Commented by ajfour last updated on 07/Feb/18

Please solve or check my solution   mrW  Sir.

$${Please}\:{solve}\:{or}\:{check}\:{my}\:{solution}\: \\ $$$${mrW}\:\:{Sir}. \\ $$

Commented by ajfour last updated on 07/Feb/18

Commented by ajfour last updated on 07/Feb/18

x=Rcot (θ/2)  v=−((ωR)/2)cosec^2 (θ/2)  ⇒  v^2 =((𝛚^2 R^2 )/4)cosec^4 (θ/2)   ....(i)  a=(dv/dt)= −((αR)/2)cosec^2 (θ/2)           +((ω^2 R)/2)cosec^2 (θ/2)cot (θ/2)     ...(ii)  Nsin θ = ma    ....(iii)  NRcot (θ/2)−((MgLcos θ)/2) =(((ML^2 )/3))α                                            ⇒ α=(3/(ML^2 ))(((maRcot (θ/2))/(sin θ))−((MgLcos θ)/2))                                            .....(iv)  ((MgL)/2)(sin θ_0 −sin θ)=(1/2)mv^2 +(1/2)(((ML^2 )/3))ω^2   using (i):  ((MgL)/2)(sin θ_0 −sin θ)=((mω^2 R^2 )/8)cosec^4 (θ/2)                                            +((ML^2 ω^2 )/6)  ω^2 =((((MgL)/2)(sin θ_0 −sin θ))/(((ML^2 )/6)+((mR^2 )/8)cosec^4 (θ/2)))   ....(A)  Using  eq. (A), (iii), (iv) in eq.(ii)  a=(R/2)cosec^2 (θ/2)((3/(ML^2 )))(((MgLcos θ)/2)−((maRcot (θ/2))/(sin θ)))       +(R/2)cosec^2 (θ/2)cot (θ/2)[((((MgL)/2)(sin θ_0 −sin θ))/(((ML^2 )/6)+((mR^2 )/8)cosec^4 (θ/2)))]    a[1+((3mR^2 cosec^2 (θ/2)cot (θ/2))/(2ML^2 sin θ))]=              (R/2)cosec^2 (θ/2)[((3gcos θ)/(2L))+((((MgL)/2)(sin θ_0 −sin θ)cot (θ/2))/(((ML^2 )/6)+((mR^2 )/8)cosec^4 (θ/2)))]  .

$${x}={R}\mathrm{cot}\:\frac{\theta}{\mathrm{2}} \\ $$$${v}=−\frac{\omega{R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\boldsymbol{{v}}^{\mathrm{2}} =\frac{\boldsymbol{\omega}^{\mathrm{2}} \boldsymbol{{R}}^{\mathrm{2}} }{\mathrm{4}}\mathrm{cosec}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}}\:\:\:....\left({i}\right) \\ $$$${a}=\frac{{dv}}{{dt}}=\:−\frac{\alpha{R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:+\frac{\omega^{\mathrm{2}} {R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}\:\:\:\:\:...\left({ii}\right) \\ $$$${N}\mathrm{sin}\:\theta\:=\:{ma}\:\:\:\:....\left({iii}\right) \\ $$$${NR}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}−\frac{{MgL}\mathrm{cos}\:\theta}{\mathrm{2}}\:=\left(\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}\right)\alpha \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\Rightarrow\:\alpha=\frac{\mathrm{3}}{{ML}^{\mathrm{2}} }\left(\frac{{maR}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\theta}−\frac{{MgL}\mathrm{cos}\:\theta}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\left({iv}\right) \\ $$$$\frac{{MgL}}{\mathrm{2}}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}\right)\omega^{\mathrm{2}} \\ $$$${using}\:\left({i}\right): \\ $$$$\frac{{MgL}}{\mathrm{2}}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right)=\frac{{m}\omega^{\mathrm{2}} {R}^{\mathrm{2}} }{\mathrm{8}}\mathrm{cosec}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{{ML}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\omega^{\mathrm{2}} =\frac{\frac{{MgL}}{\mathrm{2}}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right)}{\frac{{ML}^{\mathrm{2}} }{\mathrm{6}}+\frac{{mR}^{\mathrm{2}} }{\mathrm{8}}\mathrm{cosec}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}}}\:\:\:....\left({A}\right) \\ $$$${Using}\:\:{eq}.\:\left({A}\right),\:\left({iii}\right),\:\left({iv}\right)\:{in}\:{eq}.\left(\boldsymbol{{ii}}\right) \\ $$$${a}=\frac{{R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\left(\frac{\mathrm{3}}{{ML}^{\mathrm{2}} }\right)\left(\frac{{MgL}\mathrm{cos}\:\theta}{\mathrm{2}}−\frac{{maR}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\theta}\right) \\ $$$$\:\:\:\:\:+\frac{{R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}\left[\frac{\frac{{MgL}}{\mathrm{2}}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right)}{\frac{{ML}^{\mathrm{2}} }{\mathrm{6}}+\frac{{mR}^{\mathrm{2}} }{\mathrm{8}}\mathrm{cosec}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}}}\right] \\ $$$$ \\ $$$${a}\left[\mathrm{1}+\frac{\mathrm{3}{mR}^{\mathrm{2}} \mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}}{\mathrm{2}{ML}^{\mathrm{2}} \mathrm{sin}\:\theta}\right]= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{R}}{\mathrm{2}}\mathrm{cosec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\left[\frac{\mathrm{3}{g}\mathrm{cos}\:\theta}{\mathrm{2}{L}}+\frac{\frac{{MgL}}{\mathrm{2}}\left(\mathrm{sin}\:\theta_{\mathrm{0}} −\mathrm{sin}\:\theta\right)\mathrm{cot}\:\frac{\theta}{\mathrm{2}}}{\frac{{ML}^{\mathrm{2}} }{\mathrm{6}}+\frac{{mR}^{\mathrm{2}} }{\mathrm{8}}\mathrm{cosec}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}}}\right]\:\:. \\ $$

Commented by mrW2 last updated on 07/Feb/18

solution is correct sir!

$${solution}\:{is}\:{correct}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com