Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 29349 by abdo imad last updated on 07/Feb/18

let give f(x)= (x^n −1) e^(−x)   with n from N^★    find f^((n)) (0) .

$${let}\:{give}\:{f}\left({x}\right)=\:\left({x}^{{n}} −\mathrm{1}\right)\:{e}^{−{x}} \:\:{with}\:{n}\:{from}\:{N}^{\bigstar} \: \\ $$$${find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right)\:. \\ $$

Commented by abdo imad last updated on 09/Feb/18

the leibniz forula give  f^((n)) (x)= Σ_(k=0) ^n  C_n ^k (x^n  −1)^((k)) (e^(−x) )^((n−k))   = (x^n −1)(e^(−x) )^((n))  +Σ_(k=1) ^n C_n ^k (x^n −1)^((k))  ( e^(−x) )^((n−k))   but  (e^(−x) )^((1)) =− e^(−x)  ,  (e^(−x) )^((2)) =(−1)^2  e^(−x)  ...(e^(−x) )^((p)) =(−1)^p  e^(−x)  so  f^((n)) (x)=(−1)^n (x^n −1) e^(−x)  +Σ_(k=1) ^n  C_n ^k  (−1)^(n−k)  e^(−x) (x^n −1)^((k))   (x^n −1)^((1)) = nx^(n−1)  ,(x^n −1)^((2)) =n(n−1)^ x^(n−2) ....  (x^n −1)^((p)) =n(n−1)...(n−p+1)x^(n−p)  =((n!)/((n−p)!))x^(n−p)  with p≤n  f^((n)) (x)=(−1)^n (x^n −1)e^(−x)  +(−1)^n e^(−x)  Σ_(k=1) ^n (−1)^k  C_n ^k  ((n!)/((n−k)!))x^(n−k)   =(−1)^n (x^n −1)e^(−x)  +(−1)^n e^(−x) Σ_(k=) ^(n−1) (...)x^(n−p)   +(−1)^n  e^(−x)  (−1)^n  C_n ^n  n!  ⇒  f^((n)) (0)=(−1)^(n−1)  +n!

$${the}\:{leibniz}\:{forula}\:{give}\:\:{f}^{\left({n}\right)} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left({x}^{{n}} \:−\mathrm{1}\right)^{\left({k}\right)} \left({e}^{−{x}} \right)^{\left({n}−{k}\right)} \\ $$$$=\:\left({x}^{{n}} −\mathrm{1}\right)\left({e}^{−{x}} \right)^{\left({n}\right)} \:+\sum_{{k}=\mathrm{1}} ^{{n}} {C}_{{n}} ^{{k}} \left({x}^{{n}} −\mathrm{1}\right)^{\left({k}\right)} \:\left(\:{e}^{−{x}} \right)^{\left({n}−{k}\right)} \:\:{but} \\ $$$$\left({e}^{−{x}} \right)^{\left(\mathrm{1}\right)} =−\:{e}^{−{x}} \:,\:\:\left({e}^{−{x}} \right)^{\left(\mathrm{2}\right)} =\left(−\mathrm{1}\right)^{\mathrm{2}} \:{e}^{−{x}} \:...\left({e}^{−{x}} \right)^{\left({p}\right)} =\left(−\mathrm{1}\right)^{{p}} \:{e}^{−{x}} \:{so} \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} \left({x}^{{n}} −\mathrm{1}\right)\:{e}^{−{x}} \:+\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\left(−\mathrm{1}\right)^{{n}−{k}} \:{e}^{−{x}} \left({x}^{{n}} −\mathrm{1}\right)^{\left({k}\right)} \\ $$$$\left({x}^{{n}} −\mathrm{1}\right)^{\left(\mathrm{1}\right)} =\:{nx}^{{n}−\mathrm{1}} \:,\left({x}^{{n}} −\mathrm{1}\right)^{\left(\mathrm{2}\right)} ={n}\left({n}−\mathrm{1}\right)^{} {x}^{{n}−\mathrm{2}} .... \\ $$$$\left({x}^{{n}} −\mathrm{1}\right)^{\left({p}\right)} ={n}\left({n}−\mathrm{1}\right)...\left({n}−{p}+\mathrm{1}\right){x}^{{n}−{p}} \:=\frac{{n}!}{\left({n}−{p}\right)!}{x}^{{n}−{p}} \:{with}\:{p}\leqslant{n} \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\left(−\mathrm{1}\right)^{{n}} \left({x}^{{n}} −\mathrm{1}\right){e}^{−{x}} \:+\left(−\mathrm{1}\right)^{{n}} {e}^{−{x}} \:\sum_{{k}=\mathrm{1}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:\frac{{n}!}{\left({n}−{k}\right)!}{x}^{{n}−{k}} \\ $$$$=\left(−\mathrm{1}\right)^{{n}} \left({x}^{{n}} −\mathrm{1}\right){e}^{−{x}} \:+\left(−\mathrm{1}\right)^{{n}} {e}^{−{x}} \sum_{{k}=} ^{{n}−\mathrm{1}} \left(...\right){x}^{{n}−{p}} \\ $$$$+\left(−\mathrm{1}\right)^{{n}} \:{e}^{−{x}} \:\left(−\mathrm{1}\right)^{\boldsymbol{{n}}} \:\boldsymbol{{C}}_{{n}} ^{{n}} \:{n}!\:\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)=\left(−\mathrm{1}\right)^{\boldsymbol{{n}}−\mathrm{1}} \:+\boldsymbol{{n}}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com