Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 29354 by NECx last updated on 08/Feb/18

3sin^2 θ −sin θcos θ −4cos^2 θ=0  find the values of θ if θ lies  between 0 and 360

3sin2θsinθcosθ4cos2θ=0findthevaluesofθifθliesbetween0and360

Answered by mrW2 last updated on 08/Feb/18

3(1−cos^2  θ) −sin θcos θ −4cos^2 θ=0  3−sin θcos θ −7cos^2 θ=0  6−2sin θcos θ −7(2cos^2 θ)=0  6−sin 2θ −7(1+cos 2θ)=0  sin 2θ+7cos 2θ=−1  sin 2θ×(1/(√(7^2 +1^1 )))+cos 2θ×(7/(√(7^2 +1^2 )))=−(1/(√(7^2 +1^2 )))  sin 2θ×sin α+cos 2θ×cos α=−(1/(5(√2)))  with α=tan^(−1) (1/7)  ⇒cos (2θ−α)=−(1/(5(√2)))  ⇒2θ−α=(2n+1)π±cos^(−1) (1/(5(√2)))  ⇒θ=nπ+(1/2)(π+α±cos^(−1) (1/(5(√2))))  ⇒θ=nπ+(1/2)(π+tan^(−1) (1/7)±cos^(−1) (1/(5(√2))))  ⇒θ=180n+ { ((135°)),((53.1°)) :}  solutions within 0°−360°:  ⇒θ=53.1°, 135°, 233.1°, 315°

3(1cos2θ)sinθcosθ4cos2θ=03sinθcosθ7cos2θ=062sinθcosθ7(2cos2θ)=06sin2θ7(1+cos2θ)=0sin2θ+7cos2θ=1sin2θ×172+11+cos2θ×772+12=172+12sin2θ×sinα+cos2θ×cosα=152withα=tan117cos(2θα)=1522θα=(2n+1)π±cos1152θ=nπ+12(π+α±cos1152)θ=nπ+12(π+tan117±cos1152)θ=180n+{135°53.1°solutionswithin0°360°:θ=53.1°,135°,233.1°,315°

Answered by mrW2 last updated on 08/Feb/18

an other way:  (3sin θ−4cos θ)(sin θ+cos θ)=0  ⇒3sin θ−4cos θ=0  ⇒sin θ+cos θ=0  ⇒tan θ=(4/3)  ⇒tan θ=−1  ⇒θ=nπ+tan^(−1) (4/3) or 180n+53.1°  ⇒θ=nπ−(π/4) or 180n−45°    within 0−360°:  θ=53.1°, 135°, 233.1°, 315°

anotherway:(3sinθ4cosθ)(sinθ+cosθ)=03sinθ4cosθ=0sinθ+cosθ=0tanθ=43tanθ=1θ=nπ+tan143or180n+53.1°θ=nππ4or180n45°within0360°:θ=53.1°,135°,233.1°,315°

Terms of Service

Privacy Policy

Contact: info@tinkutara.com