Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29443 by prof Abdo imad last updated on 08/Feb/18

find ∫_0 ^π     ((sinx)/(√(1+sin^2 x)))dx

find0πsinx1+sin2xdx

Answered by sma3l2996 last updated on 09/Feb/18

t=cosx⇒dt=−sinxdx  ∫_0 ^π ((sinx)/(√(1+sin^2 x)))dx=∫_(−1) ^1 (dt/(√(1+(1−t^2 ))))=∫_(−1) ^1 (dt/((√2)(√(1−((t/(√2)))^2 ))))  t=(√2)u⇒dt=(√2)du  ∫_0 ^π ((sinx)/(√(1+sin^2 x)))dx=∫_(−(√2)/2) ^((√2)/2) (du/(√(1−u^2 )))  u=siny⇒dy=(du/(√(1−u^2 )))  ∫_0 ^π ((sinx)/(√(1+sin^2 x)))dx=∫_(−π/4) ^(π/4) dy=(π/2)

t=cosxdt=sinxdx0πsinx1+sin2xdx=11dt1+(1t2)=11dt21(t2)2t=2udt=2du0πsinx1+sin2xdx=2/22/2du1u2u=sinydy=du1u20πsinx1+sin2xdx=π/4π/4dy=π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com