Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29446 by prof Abdo imad last updated on 08/Feb/18

let give a<1 find the value of  f(a)= ∫_0 ^(π/2)   (dx/(1−acos^2 x)).

$${let}\:{give}\:{a}<\mathrm{1}\:{find}\:{the}\:{value}\:{of} \\ $$ $${f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{1}−{acos}^{\mathrm{2}} {x}}. \\ $$

Commented byprof Abdo imad last updated on 07/Mar/18

f(a)=∫_0 ^(π/2)    (dx/(1−a((1 +cos(2x))/2)))=∫_0 ^(π/2)   ((2dx)/(2−a −acos(2x)))  = ∫_0 ^π     (dt/(2−a −a cost)) and the ch.tan((t/2))=u give  f(a)= ∫_0 ^∞     (1/(2−a−a ((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  =∫_0 ^∞      ((2du)/((2−a)(1+u^2 )−a(1−u^2 )))  =∫_0 ^∞    ((2du)/(2−a +(2−a)u^2  −a +au^2 ))  =∫_0 ^∞       ((2du)/(2−2a +2u^2 )) =∫_0 ^∞   (du/(u^2  −a+1))  =∫_0 ^∞     (du/(u^2 +1−a)) the ch.u=(√(1−a)) x give  f(a)=∫_0 ^∞    (((√(1−a)) dx)/((1−a)(1+x^2 )))=(1/(√(1−a))) (π/2) ⇒  f(a)= (π/(2(√(1−a))))  .

$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{1}−{a}\frac{\mathrm{1}\:+{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{\mathrm{2}{dx}}{\mathrm{2}−{a}\:−{acos}\left(\mathrm{2}{x}\right)} \\ $$ $$=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dt}}{\mathrm{2}−{a}\:−{a}\:{cost}}\:{and}\:{the}\:{ch}.{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}\:{give} \\ $$ $${f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\mathrm{2}−{a}−{a}\:\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{2}{du}}{\left(\mathrm{2}−{a}\right)\left(\mathrm{1}+{u}^{\mathrm{2}} \right)−{a}\left(\mathrm{1}−{u}^{\mathrm{2}} \right)} \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{du}}{\mathrm{2}−{a}\:+\left(\mathrm{2}−{a}\right){u}^{\mathrm{2}} \:−{a}\:+{au}^{\mathrm{2}} } \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{\mathrm{2}{du}}{\mathrm{2}−\mathrm{2}{a}\:+\mathrm{2}{u}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{du}}{{u}^{\mathrm{2}} \:−{a}+\mathrm{1}} \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}−{a}}\:{the}\:{ch}.{u}=\sqrt{\mathrm{1}−{a}}\:{x}\:{give} \\ $$ $${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\sqrt{\mathrm{1}−{a}}\:{dx}}{\left(\mathrm{1}−{a}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}=\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{a}}}\:\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$ $${f}\left({a}\right)=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{1}−{a}}}\:\:. \\ $$

Answered by sma3l2996 last updated on 09/Feb/18

t=tanx⇒dx=(dt/(1+t^2 ))  f(a)=∫_0 ^(+∞) (1/(1−a×(1/(1+t^2 ))))×(dt/(1+t^2 ))  =∫_0 ^(+∞) (dt/(t^2 +1−a))=∫_0 ^(+∞) (dt/((1−a)(((t/(√(1−a))))^2 +1)))  t=(√(1−a))u⇒dt=(√(1−a))du  f(a)=((√(1−a))/(1−a))∫_0 ^∞ (du/(u^2 +1))=((√(1−a))/(1−a))[arctanu]_0 ^(+∞)   f(a)=((√(1−a))/(1−a))×(π/2)

$${t}={tanx}\Rightarrow{dx}=\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$ $${f}\left({a}\right)=\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{1}}{\mathrm{1}−{a}×\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }}×\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$ $$=\int_{\mathrm{0}} ^{+\infty} \frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}−{a}}=\int_{\mathrm{0}} ^{+\infty} \frac{{dt}}{\left(\mathrm{1}−{a}\right)\left(\left(\frac{{t}}{\sqrt{\mathrm{1}−{a}}}\right)^{\mathrm{2}} +\mathrm{1}\right)} \\ $$ $${t}=\sqrt{\mathrm{1}−{a}}{u}\Rightarrow{dt}=\sqrt{\mathrm{1}−{a}}{du} \\ $$ $${f}\left({a}\right)=\frac{\sqrt{\mathrm{1}−{a}}}{\mathrm{1}−{a}}\int_{\mathrm{0}} ^{\infty} \frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}}=\frac{\sqrt{\mathrm{1}−{a}}}{\mathrm{1}−{a}}\left[{arctanu}\right]_{\mathrm{0}} ^{+\infty} \\ $$ $${f}\left({a}\right)=\frac{\sqrt{\mathrm{1}−{a}}}{\mathrm{1}−{a}}×\frac{\pi}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com