Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 29450 by prof Abdo imad last updated on 08/Feb/18

find lim_(n→+∞)   (1/n^2 )^n (√((n^2 +1^2 )(n^2 +2^2 )....(n^2  +n^(2) ) .))

$${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:^{{n}} \sqrt{\left({n}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} \right)\left({n}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \right)....\left({n}^{\mathrm{2}} \:+{n}^{\left.\mathrm{2}\right)\:} .\right.} \\ $$

Commented by prof Abdo imad last updated on 23/Mar/18

let put  A_n  =(1/n^2 )  ( Π_(k=1) ^n (n^2  +k^2 ))^(1/n)   A_n = (1/n^2 )( n^(2n)  Π_(k=1) ^n (1+(k^2 /n^2 )))^(1/n) =( Π_(k=1) ^n  (1+(k^2 /n^2 ))^(1/n) ⇒  ln(A_n )=(1/n) Σ_(k=1) ^n  ln( 1+ ((k/n))^2 )→ ∫_0 ^1 ln(1+x^2 )dx  but  ∫_0 ^1  ln(1+x^2 )dx= [xln(1+x^2 )]_0 ^1  −∫_0 ^1   ((2x^2 )/(1+x^2 ))dx  =ln(2) −2 ∫_0 ^1   ((1+x^2 −1)/(1+x^2 ))dx  =ln(2) −2  +2 ∫_0 ^1   (dx/(1+x^2 ))  =ln(2) −2  + 2 .(π/4) = (π/2) +ln(2) −2  ⇒lim_(n→∞)  A_n = e^((π/2) +ln(2)−2)  = (2/e^2 ) e^(π/2)   .

$${let}\:{put}\:\:{A}_{{n}} \:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:\left(\:\prod_{{k}=\mathrm{1}} ^{{n}} \left({n}^{\mathrm{2}} \:+{k}^{\mathrm{2}} \right)\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$${A}_{{n}} =\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\:{n}^{\mathrm{2}{n}} \:\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)\right)^{\frac{\mathrm{1}}{{n}}} =\left(\:\prod_{{k}=\mathrm{1}} ^{{n}} \:\left(\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{{n}}} \Rightarrow\right. \\ $$$${ln}\left({A}_{{n}} \right)=\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{ln}\left(\:\mathrm{1}+\:\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} \right)\rightarrow\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx} \\ $$$${but}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx}=\:\left[{xln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$={ln}\left(\mathrm{2}\right)\:−\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$={ln}\left(\mathrm{2}\right)\:−\mathrm{2}\:\:+\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$={ln}\left(\mathrm{2}\right)\:−\mathrm{2}\:\:+\:\mathrm{2}\:.\frac{\pi}{\mathrm{4}}\:=\:\frac{\pi}{\mathrm{2}}\:+{ln}\left(\mathrm{2}\right)\:−\mathrm{2} \\ $$$$\Rightarrow{lim}_{{n}\rightarrow\infty} \:{A}_{{n}} =\:{e}^{\frac{\pi}{\mathrm{2}}\:+{ln}\left(\mathrm{2}\right)−\mathrm{2}} \:=\:\frac{\mathrm{2}}{{e}^{\mathrm{2}} }\:{e}^{\frac{\pi}{\mathrm{2}}} \:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com