Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 29456 by prof Abdo imad last updated on 08/Feb/18

let give F(x)= ∫_x ^(2x)    (dt/(√(1+t^2 +t^4 )))   1) calculate (dF/dx)(x)  2)find lim_(x→+∞) F(x) and lim_(x→+∞)  ((F(x))/x) .

$${let}\:{give}\:{F}\left({x}\right)=\:\int_{{x}} ^{\mathrm{2}{x}} \:\:\:\frac{{dt}}{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} +{t}^{\mathrm{4}} }}\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{{dF}}{{dx}}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{x}\rightarrow+\infty} {F}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} \:\frac{{F}\left({x}\right)}{{x}}\:. \\ $$

Commented by prof Abdo imad last updated on 13/Feb/18

1) F^′ (x)=    (2/(√(1+4x^2  +16x^4 ))) −(1/(√(1+x^2  +x^4 )))  .  2) we have  1 +t^2  +t^4 >t^2 +t^4 ⇒(√(1+t^2 +t^4 >))t(√(1+t^2 ))  for t>0 ⇒ (1/(√(1+t^2 +t^4 ))) <   (1/(t(√(1+t^2 )))) ⇒  F(x)<  ∫_x ^(2x)        (dt/(t(√(1+t^2 )))) < ∫_x ^(2x)   (dt/t^2 ) =[−(1/t)]_x ^(2x) =(1/x) −(1/(2x))  but lim_(x→+∞ )   ((1/x) −(1/(2x)))=0 ⇒  lim_(x→+∞) F(x)=0  also lim_(x→+∞)  ((F(x))/x)=0.

$$\left.\mathrm{1}\right)\:{F}^{'} \left({x}\right)=\:\:\:\:\frac{\mathrm{2}}{\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \:+\mathrm{16}{x}^{\mathrm{4}} }}\:−\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }}\:\:. \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:\:\mathrm{1}\:+{t}^{\mathrm{2}} \:+{t}^{\mathrm{4}} >{t}^{\mathrm{2}} +{t}^{\mathrm{4}} \Rightarrow\sqrt{\mathrm{1}+{t}^{\mathrm{2}} +{t}^{\mathrm{4}} >}{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${for}\:{t}>\mathrm{0}\:\Rightarrow\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} +{t}^{\mathrm{4}} }}\:<\:\:\:\frac{\mathrm{1}}{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:\Rightarrow \\ $$$${F}\left({x}\right)<\:\:\int_{{x}} ^{\mathrm{2}{x}} \:\:\:\:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:<\:\int_{{x}} ^{\mathrm{2}{x}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} }\:=\left[−\frac{\mathrm{1}}{{t}}\right]_{{x}} ^{\mathrm{2}{x}} =\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}} \\ $$$${but}\:{lim}_{{x}\rightarrow+\infty\:} \:\:\left(\frac{\mathrm{1}}{{x}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}}\right)=\mathrm{0}\:\Rightarrow\:\:{lim}_{{x}\rightarrow+\infty} {F}\left({x}\right)=\mathrm{0} \\ $$$${also}\:{lim}_{{x}\rightarrow+\infty} \:\frac{{F}\left({x}\right)}{{x}}=\mathrm{0}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com