Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 29461 by prof Abdo imad last updated on 09/Feb/18

let give  u_n = (1/(√n))(  (1/(√1)) +(1/(√2)) +...+(1/(√n)))   find lim_(n→+∞) u_(n ) .

$${let}\:{give}\:\:{u}_{{n}} =\:\frac{\mathrm{1}}{\sqrt{{n}}}\left(\:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}}}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+...+\frac{\mathrm{1}}{\sqrt{{n}}}\right)\: \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}\:} . \\ $$

Commented by prof Abdo imad last updated on 13/Feb/18

we have u_n =((√n)/n)(  (1/(√1)) + (1/(√2)) +.....+(1/(√n)))  = (1/n)(  (1/(√(1/n))) +(1/(√(2/n))) +....+(1/(√(n/n))))  = (1/n)Σ_(k=1) ^n   (1/(√(k/n))) so u_(n )  is a Rieman sum and  lim_(n→∞)  u_n = ∫_0 ^1     (dx/(√x))  =[2(√(x ))]_0 ^1 = 2 .

$${we}\:{have}\:{u}_{{n}} =\frac{\sqrt{{n}}}{{n}}\left(\:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}}}\:+\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+.....+\frac{\mathrm{1}}{\sqrt{{n}}}\right) \\ $$$$=\:\frac{\mathrm{1}}{{n}}\left(\:\:\frac{\mathrm{1}}{\sqrt{\frac{\mathrm{1}}{{n}}}}\:+\frac{\mathrm{1}}{\sqrt{\frac{\mathrm{2}}{{n}}}}\:+....+\frac{\mathrm{1}}{\sqrt{\frac{{n}}{{n}}}}\right) \\ $$$$=\:\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{\frac{{k}}{{n}}}}\:{so}\:{u}_{{n}\:} \:{is}\:{a}\:{Rieman}\:{sum}\:{and} \\ $$$${lim}_{{n}\rightarrow\infty} \:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\sqrt{{x}}}\:\:=\left[\mathrm{2}\sqrt{{x}\:}\right]_{\mathrm{0}} ^{\mathrm{1}} =\:\mathrm{2}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com