Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 29505 by abdo imad last updated on 09/Feb/18

let give u_n =  Σ_(k=0) ^∞    (1/((k+1)^2  2^k ))  find  lim_(n→∞) u_n   .

letgiveun=k=01(k+1)22kfindlimnun.

Commented by abdo imad last updated on 11/Feb/18

u_n =Σ_(k=0) ^n    (1/((k+1)^2 2^k )).

un=k=0n1(k+1)22k.

Commented by abdo imad last updated on 13/Feb/18

we have u_n = Σ_(k=1) ^(n+1)   (1/(k^2  2^(k−1) ))=2Σ_(k=1) ^(n+1)   (1/k^2 )((1/2))^k but thserie  Σ_(k=1) ^∞  (1/k^2 )((1/2))^k  is convrgente  let putw(x)=Σ_(n=1) ^∞  (x^n /n^2 )  for ∣x∣<1  we have w^′ (x)= Σ_(n=1) ^∞  (x^(n−1) /n) ⇒xw^′ (x)=Σ_(n=1) ^∞  (x^n /n)  ⇒w^′ (x) +xw^(′′) (x)=Σ_(n=1) ^∞  x^(n−1) =Σ_(n=0) ^∞  x^n   =(1/(1−x)) so w is  solution for the d.e  y^′  +xy^(′′)  =(1/(1−x)) for y^′ =z ⇒  z+xz^′ =(1/(1−x))    h.e⇒z+xz^′ =0 ⇒xz^′ =−z ⇒(z^′ /z) =((−1)/x)  ⇒ln∣z∣=−ln∣x∣ +k⇒z= (λ/x)  for 0<x<1 mvc ⇒  z^′ =(λ^′ /x) −(λ/x^2 ) ⇒(λ/x) +λ^′  −(λ/x)=(1/(1−x)) ⇒λ^′  = (1/(1−x))⇒  λ(x)= −ln(1−x) +k and k=λ(0)=0  z(x)=−((ln(1−x))/x)=y^′  ⇒ y(x)=−∫_0 ^x ((ln(1−t))/t)dt +c  c=y(0)=0 ⇒ w(x)= −∫_0 ^x  ((ln(1−t))/t)dt and  S=2w((1/2))=−2∫_0 ^(1/2) ((ln(1−t))/t)dt .....be continued....

wehaveun=k=1n+11k22k1=2k=1n+11k2(12)kbutthseriek=11k2(12)kisconvrgenteletputw(x)=n=1xnn2forx∣<1wehavew(x)=n=1xn1nxw(x)=n=1xnnw(x)+xw(x)=n=1xn1=n=0xn=11xsowissolutionforthed.ey+xy=11xfory=zz+xz=11xh.ez+xz=0xz=zzz=1xlnz∣=lnx+kz=λxfor0<x<1mvcz=λxλx2λx+λλx=11xλ=11xλ(x)=ln(1x)+kandk=λ(0)=0z(x)=ln(1x)x=yy(x)=0xln(1t)tdt+cc=y(0)=0w(x)=0xln(1t)tdtandS=2w(12)=2012ln(1t)tdt.....becontinued....

Commented by abdo imad last updated on 14/Feb/18

we have lim_(n→∞) u_n = 2Σ_(n=1) ^∞  (1/n^2 )((1/2))^n  let put  S(x)=Σ_(n=0) ^∞  x^n  =(1/(1−x))⇒ ∫_0 ^x S(t)dt = Σ_(n=0) ^∞  (x^(n+1) /(n+1))=Σ_(n=1) ^∞  (x^n /n)  =−ln(1−x)  for 0<x<1   (λ=0)⇒  x Σ_(n=1) ^∞   (x^(n−1) /n)=−ln(1−x)⇒Σ_(n=1) ^∞  (x^(n−1) /n) =−((ln(1−x))/x)⇒  ∫_0 ^x (Σ_(n=1) ^∞  (t^(n−1) /n))dt=−∫_0 ^x  ((ln(1−t))/t) +λ⇒  Σ_(n=1) ^∞  (x^n /n^2 ) =−∫_0 ^x   ((ln(1−t))/t)      (λ=0)and  2Σ_(n=1) ^∞  (1/n^2 )((1/2))^n  =−∫_0 ^(1/2)     ((ln(1−t))/t)dt  ch.  t=cosθ  ∫_0 ^(1/2)   (...)dt= ∫_(π/2) ^(π/3)  ((ln(1−cosθ))/(cosθ))sinθ dθ  =∫_(π/2) ^(π/3)  tanθ ln(1−cosθ)dθ....be continued...

wehavelimnun=2n=11n2(12)nletputS(x)=n=0xn=11x0xS(t)dt=n=0xn+1n+1=n=1xnn=ln(1x)for0<x<1(λ=0)xn=1xn1n=ln(1x)n=1xn1n=ln(1x)x0x(n=1tn1n)dt=0xln(1t)t+λn=1xnn2=0xln(1t)t(λ=0)and2n=11n2(12)n=012ln(1t)tdtch.t=cosθ012(...)dt=π2π3ln(1cosθ)cosθsinθdθ=π2π3tanθln(1cosθ)dθ....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com