Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29506 by abdo imad last updated on 09/Feb/18

le give  A_n = ∫_0 ^(π/2)   ((sin((2n−1)x))/(sinx))dx and B_n =∫_0 ^(π/2)  ((sin^2 (nx))/(sin^2 x))dx  1)calculate A_n   2)prove that B_(n+1) −B_n = A_(n+1) .then find B_n .

legiveAn=0π2sin((2n1)x)sinxdxandBn=0π2sin2(nx)sin2xdx1)calculateAn2)provethatBn+1Bn=An+1.thenfindBn.

Commented by abdo imad last updated on 11/Feb/18

A_(n+1) −A_n = ∫_0 ^(π/2)   ((sin(2n+1)x −sin(2n−1)x)/(sinx))dx but  sin(2n+1)x= sin(2nx)cosx +cos(2nx)sinx  sin(2n−1)x=sin(2nx)cosx −cos(2nx)sinx ⇒  sin(2n+1)x −sin(2n−1)x=2cos(2nx)sinx⇒  A_(n+1) −A_(n ) = ∫_0 ^(π/2)  2cos(2nx)dx=[(1/n)sin(2nx)]_0 ^(π/2)  =0 ∀n  A_n =A_1 = (π/2) .

An+1An=0π2sin(2n+1)xsin(2n1)xsinxdxbutsin(2n+1)x=sin(2nx)cosx+cos(2nx)sinxsin(2n1)x=sin(2nx)cosxcos(2nx)sinxsin(2n+1)xsin(2n1)x=2cos(2nx)sinxAn+1An=0π22cos(2nx)dx=[1nsin(2nx)]0π2=0nAn=A1=π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com