Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 29554 by abdo imad last updated on 09/Feb/18

let give f(x)= x^2 cos((1/x^2 )) if x∈]0,1] but its derivative f^′   is not integrable on ]0,1].

$$\left.{l}\left.{et}\:{give}\:{f}\left({x}\right)=\:{x}^{\mathrm{2}} {cos}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:{if}\:{x}\in\right]\mathrm{0},\mathrm{1}\right]\:{but}\:{its}\:{derivative}\:{f}^{'} \\ $$$$\left.{i}\left.{s}\:{not}\:{integrable}\:{on}\:\right]\mathrm{0},\mathrm{1}\right]. \\ $$

Commented by abdo imad last updated on 14/Feb/18

we have lim_(x→0) f(x)=0 because ∣x^2 cos((1/x))∣≤ x^2   lim_(x→0)   ((f(x))/x) =lim_(x→0)  xcos((1/x))=0 so f is derivable on  [0,1]  from another side f^′ (x)= 2xcos((1/x^2 ))−x^2 (−2x^(−3) )sin((1/x^2 ))  =2xcos((1/x^2 )) −(2/x) sin((1/x^(2)) ))and_0_    ∫_0 ^1  f^′ (x)dx = 2 ∫_0 ^1   xcos((1/x^2 ))dx −2∫_0 ^1  (1/x)sin((1/x^2 )) ch (1/x)=t  ∫_0 ^1  xcos((1/x^2 ))dx =−∫_1 ^(+∞) (1/t)cos(t^2 )(−(dt/t^2 ))  =∫_1 ^(+∞)  ((cos(t^2 ))/t^3 )dt integral conv.and  ∫_0 ^1    (1/x) sin((1/x^2 ))=−∫_1 ^(+∞)  t sint^2  ((−dt)/t^2 )= ∫_1 ^(+∞)  ((sin(t^2 ))/t)dt and  this integral is?divergent .

$${we}\:{have}\:{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)=\mathrm{0}\:{because}\:\mid{x}^{\mathrm{2}} {cos}\left(\frac{\mathrm{1}}{{x}}\right)\mid\leqslant\:{x}^{\mathrm{2}} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{f}\left({x}\right)}{{x}}\:={lim}_{{x}\rightarrow\mathrm{0}} \:{xcos}\left(\frac{\mathrm{1}}{{x}}\right)=\mathrm{0}\:{so}\:{f}\:{is}\:{derivable}\:{on} \\ $$$$\left[\mathrm{0},\mathrm{1}\right]\:\:{from}\:{another}\:{side}\:{f}^{'} \left({x}\right)=\:\mathrm{2}{xcos}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)−{x}^{\mathrm{2}} \left(−\mathrm{2}{x}^{−\mathrm{3}} \right){sin}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right) \\ $$$$=\mathrm{2}{xcos}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:−\frac{\mathrm{2}}{{x}}\:{sin}\left(\frac{\mathrm{1}}{{x}^{\left.\mathrm{2}\right)} }\right){and}_{\mathrm{0}_{} } \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}^{'} \left({x}\right){dx}\:=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{xcos}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){dx}\:−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{x}}{sin}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:{ch}\:\frac{\mathrm{1}}{{x}}={t} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{xcos}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){dx}\:=−\int_{\mathrm{1}} ^{+\infty} \frac{\mathrm{1}}{{t}}{cos}\left({t}^{\mathrm{2}} \right)\left(−\frac{{dt}}{{t}^{\mathrm{2}} }\right) \\ $$$$=\int_{\mathrm{1}} ^{+\infty} \:\frac{{cos}\left({t}^{\mathrm{2}} \right)}{{t}^{\mathrm{3}} }{dt}\:{integral}\:{conv}.{and} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}}{{x}}\:{sin}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)=−\int_{\mathrm{1}} ^{+\infty} \:{t}\:{sint}^{\mathrm{2}} \:\frac{−{dt}}{{t}^{\mathrm{2}} }=\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{{t}}{dt}\:{and} \\ $$$${this}\:{integral}\:{is}?{divergent}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com