Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 29559 by ajfour last updated on 09/Feb/18

Commented by ajfour last updated on 10/Feb/18

Find minimum length of portion  BC of rope ABC of length l, mass  m, in contact with ground.

$${Find}\:{minimum}\:{length}\:{of}\:{portion} \\ $$$${BC}\:{of}\:{rope}\:{ABC}\:{of}\:{length}\:{l},\:{mass} \\ $$$${m},\:{in}\:{contact}\:{with}\:{ground}. \\ $$

Commented by ajfour last updated on 10/Feb/18

my answer to the question:  s = l+μb−(√(b^2 +μ^2 b^2 +2μbl))  .

$${my}\:{answer}\:{to}\:{the}\:{question}: \\ $$$${s}\:=\:{l}+\mu{b}−\sqrt{{b}^{\mathrm{2}} +\mu^{\mathrm{2}} {b}^{\mathrm{2}} +\mathrm{2}\mu{bl}}\:\:. \\ $$

Commented by ajfour last updated on 10/Feb/18

Commented by ajfour last updated on 10/Feb/18

Tsin θ−(T+dT)sin (θ+dθ)=λdl  where  𝛌 = ((mg)/l)  ⇒  Tsin θ−(T+dT)(sin θ+cos θdθ)                      =λdl           ⇒  dTsin θ+Tcos θdθ = −λdl   ..(i)   − Tcos θ =−T_A cos θ_A = T_B =λμs   ..(ii)  ⇒       dTcos θ=Tsin θdθ     ....(iii)     Further,    dl = −(dy/(sin θ))    ...(iv)  using  (iii) in (i),     ((Tsin^2 θdθ)/(cos θ))+Tcos θdθ =−λdl  using (iv),  ⇒   ((Tdθ)/(cos θ)) =λ(dy/(sin θ))  using (ii),       − (((λμs)dθ)/(cos^2 θ)) = ((λdy)/(sin θ))  ⇒ − μs∫_π ^(  θ_A ) sec θ tan θ dθ = ∫_0 ^(  b) dy        −μs(sec θ_A +1) = b  or   μ^2 s^2 sec^2 θ_A  =(b+μs)^2     ...(I)  And as  T_A sin θ_A =λ(l−s)                −T_A cos θ_A  =μλs  ⇒       −tan θ_A  =((l−s)/(μs))         .....(II)  using (II) in (I):       μ^2 s^2 +(l−s)^2  =(b+μs)^2        l^2 +s^2 −2ls= b^2 +2bμs         s^2 −2(l+μb)s = b^2 −l^2     (s−l−μb)^2 =b^2 −l^2 +(l+μb)^2    ⇒  s = l+𝛍b ±(√((l+𝛍b)^2 +b^2 −l^2 ))  we reject the −ve,   because if μ=0 , s=l−b and not   equal to l+b , so   s = (l+𝛍b)−(√(b^2 +𝛍^2 b^2 +2𝛍lb))  .

$${T}\mathrm{sin}\:\theta−\left({T}+{dT}\right)\mathrm{sin}\:\left(\theta+{d}\theta\right)=\lambda{dl} \\ $$$${where}\:\:\boldsymbol{\lambda}\:=\:\frac{\boldsymbol{{mg}}}{\boldsymbol{{l}}} \\ $$$$\Rightarrow\:\:{T}\mathrm{sin}\:\theta−\left({T}+{dT}\right)\left(\mathrm{sin}\:\theta+\mathrm{cos}\:\theta{d}\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\lambda{dl}\:\:\:\:\:\:\:\:\: \\ $$$$\Rightarrow\:\:{dT}\mathrm{sin}\:\theta+{T}\mathrm{cos}\:\theta{d}\theta\:=\:−\lambda{dl}\:\:\:..\left({i}\right) \\ $$$$\:−\:{T}\mathrm{cos}\:\theta\:=−{T}_{{A}} \mathrm{cos}\:\theta_{{A}} =\:{T}_{{B}} =\lambda\mu{s}\:\:\:..\left({ii}\right) \\ $$$$\Rightarrow\:\:\:\:\:\:\:{dT}\mathrm{cos}\:\theta={T}\mathrm{sin}\:\theta{d}\theta\:\:\:\:\:....\left({iii}\right) \\ $$$$\:\:\:{Further},\:\:\:\:{dl}\:=\:−\frac{{dy}}{\mathrm{sin}\:\theta}\:\:\:\:...\left({iv}\right) \\ $$$${using}\:\:\left({iii}\right)\:{in}\:\left({i}\right), \\ $$$$\:\:\:\frac{{T}\mathrm{sin}\:^{\mathrm{2}} \theta{d}\theta}{\mathrm{cos}\:\theta}+{T}\mathrm{cos}\:\theta{d}\theta\:=−\lambda{dl} \\ $$$${using}\:\left({iv}\right), \\ $$$$\Rightarrow\:\:\:\frac{{Td}\theta}{\mathrm{cos}\:\theta}\:=\lambda\frac{{dy}}{\mathrm{sin}\:\theta} \\ $$$${using}\:\left({ii}\right), \\ $$$$\:\:\:\:\:−\:\frac{\left(\lambda\mu{s}\right){d}\theta}{\mathrm{cos}\:^{\mathrm{2}} \theta}\:=\:\frac{\lambda{dy}}{\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\:−\:\mu{s}\int_{\pi} ^{\:\:\theta_{{A}} } \mathrm{sec}\:\theta\:\mathrm{tan}\:\theta\:{d}\theta\:=\:\int_{\mathrm{0}} ^{\:\:{b}} {dy} \\ $$$$\:\:\:\:\:\:−\mu{s}\left(\mathrm{sec}\:\theta_{{A}} +\mathrm{1}\right)\:=\:{b} \\ $$$${or}\:\:\:\mu^{\mathrm{2}} {s}^{\mathrm{2}} \mathrm{sec}\:^{\mathrm{2}} \theta_{{A}} \:=\left({b}+\mu{s}\right)^{\mathrm{2}} \:\:\:\:...\left({I}\right) \\ $$$${And}\:{as}\:\:{T}_{{A}} \mathrm{sin}\:\theta_{{A}} =\lambda\left({l}−{s}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{T}_{{A}} \mathrm{cos}\:\theta_{{A}} \:=\mu\lambda{s} \\ $$$$\Rightarrow\:\:\:\:\:\:\:−\mathrm{tan}\:\theta_{{A}} \:=\frac{{l}−{s}}{\mu{s}}\:\:\:\:\:\:\:\:\:.....\left({II}\right) \\ $$$${using}\:\left({II}\right)\:{in}\:\left({I}\right): \\ $$$$\:\:\:\:\:\mu^{\mathrm{2}} {s}^{\mathrm{2}} +\left({l}−{s}\right)^{\mathrm{2}} \:=\left({b}+\mu{s}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:{l}^{\mathrm{2}} +{s}^{\mathrm{2}} −\mathrm{2}{ls}=\:{b}^{\mathrm{2}} +\mathrm{2}{b}\mu{s} \\ $$$$\:\:\:\:\:\:\:{s}^{\mathrm{2}} −\mathrm{2}\left({l}+\mu{b}\right){s}\:=\:{b}^{\mathrm{2}} −{l}^{\mathrm{2}} \\ $$$$\:\:\left({s}−{l}−\mu{b}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} −{l}^{\mathrm{2}} +\left({l}+\mu{b}\right)^{\mathrm{2}} \\ $$$$\:\Rightarrow\:\:\boldsymbol{{s}}\:=\:\boldsymbol{{l}}+\boldsymbol{\mu{b}}\:\pm\sqrt{\left(\boldsymbol{{l}}+\boldsymbol{\mu{b}}\right)^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{{l}}^{\mathrm{2}} } \\ $$$${we}\:{reject}\:{the}\:−{ve},\: \\ $$$${because}\:{if}\:\mu=\mathrm{0}\:,\:{s}={l}−{b}\:{and}\:{not} \\ $$$$\:{equal}\:{to}\:{l}+{b}\:,\:{so} \\ $$$$\:\boldsymbol{{s}}\:=\:\left(\boldsymbol{{l}}+\boldsymbol{\mu{b}}\right)−\sqrt{\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{\mu}^{\mathrm{2}} \boldsymbol{{b}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mu{lb}}}\:\:. \\ $$

Commented by ajfour last updated on 10/Feb/18

anything wrong with my method ?  Please check my solution  mrW Sir.

$${anything}\:{wrong}\:{with}\:{my}\:{method}\:? \\ $$$${Please}\:{check}\:{my}\:{solution} \\ $$$${mrW}\:{Sir}. \\ $$

Commented by mrW2 last updated on 10/Feb/18

Your answer is correct sir.   I made a mistake in my calculation.

$${Your}\:{answer}\:{is}\:{correct}\:{sir}.\: \\ $$$${I}\:{made}\:{a}\:{mistake}\:{in}\:{my}\:{calculation}. \\ $$

Answered by mrW2 last updated on 10/Feb/18

Commented by 33 last updated on 10/Feb/18

Sir, we can also use the equation  of caternary arc. i dont know  much about it tho. just suggesting

$${Sir},\:{we}\:{can}\:{also}\:{use}\:{the}\:{equation} \\ $$$${of}\:{caternary}\:{arc}.\:{i}\:{dont}\:{know} \\ $$$${much}\:{about}\:{it}\:{tho}.\:{just}\:{suggesting} \\ $$

Commented by 33 last updated on 10/Feb/18

glad that my suggestion helped you

$${glad}\:{that}\:{my}\:{suggestion}\:{helped}\:{you} \\ $$

Commented by mrW2 last updated on 10/Feb/18

let ρ=(m/l)  let′s say the length of portion BC is s.  then length of portion AB=l−s  length of imaged rope AD=2(l−s)  the tension in rope AD at B is T  T≤μρsg (=max. friction force)    now we look at the catenary ABD.  eqn. of catenary is  y=a cosh (x/a)  L=a sinh (x/a) (length of rope upon B)  with a=(T/(ρg))=((μρsg)/(ρg))=μs    assume distance from A to D=2λa    at point D we have:  y=a+b=a cosh ((λa)/a)  ⇒cosh λ=((a+b)/a)   ..(i)  l−s=a sinh ((λa)/a)  ⇒sinh λ=((l−s)/a)    ..(ii)    cosh^2  λ−sinh^2  λ=1  ⇒(((a+b)/a))^2 −(((l−s)/a))^2 =1  ⇒a^2 +2ab+b^2 −l^2 +2ls−s^2 =a^2   ⇒2ab+b^2 −l^2 +2ls−s^2 =0  ⇒2μbs+b^2 −l^2 +2ls−s^2 =0  ⇒s^2 −2(l+μb)s+l^2 −b^2 =0  ⇒s=(l+μb)−(√((l+μb)^2 −(l^2 −b^2 )))  (+(√(...)) is not suitable)  ⇒s=(l+μb)−(√((1+μ^2 )b^2 +2μbl))

$${let}\:\rho=\frac{{m}}{{l}} \\ $$$${let}'{s}\:{say}\:{the}\:{length}\:{of}\:{portion}\:{BC}\:{is}\:{s}. \\ $$$${then}\:{length}\:{of}\:{portion}\:{AB}={l}−{s} \\ $$$${length}\:{of}\:{imaged}\:{rope}\:{AD}=\mathrm{2}\left({l}−{s}\right) \\ $$$${the}\:{tension}\:{in}\:{rope}\:{AD}\:{at}\:{B}\:{is}\:{T} \\ $$$${T}\leqslant\mu\rho{sg}\:\left(={max}.\:{friction}\:{force}\right) \\ $$$$ \\ $$$${now}\:{we}\:{look}\:{at}\:{the}\:{catenary}\:{ABD}. \\ $$$${eqn}.\:{of}\:{catenary}\:{is} \\ $$$${y}={a}\:\mathrm{cosh}\:\frac{{x}}{{a}} \\ $$$${L}={a}\:\mathrm{sinh}\:\frac{{x}}{{a}}\:\left({length}\:{of}\:{rope}\:{upon}\:{B}\right) \\ $$$${with}\:{a}=\frac{{T}}{\rho{g}}=\frac{\mu\rho{sg}}{\rho{g}}=\mu{s} \\ $$$$ \\ $$$${assume}\:{distance}\:{from}\:{A}\:{to}\:{D}=\mathrm{2}\lambda{a} \\ $$$$ \\ $$$${at}\:{point}\:{D}\:{we}\:{have}: \\ $$$${y}={a}+{b}={a}\:\mathrm{cosh}\:\frac{\lambda{a}}{{a}} \\ $$$$\Rightarrow\mathrm{cosh}\:\lambda=\frac{{a}+{b}}{{a}}\:\:\:..\left({i}\right) \\ $$$${l}−{s}={a}\:\mathrm{sinh}\:\frac{\lambda{a}}{{a}} \\ $$$$\Rightarrow\mathrm{sinh}\:\lambda=\frac{{l}−{s}}{{a}}\:\:\:\:..\left({ii}\right) \\ $$$$ \\ $$$$\mathrm{cosh}^{\mathrm{2}} \:\lambda−\mathrm{sinh}^{\mathrm{2}} \:\lambda=\mathrm{1} \\ $$$$\Rightarrow\left(\frac{{a}+{b}}{{a}}\right)^{\mathrm{2}} −\left(\frac{{l}−{s}}{{a}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +\mathrm{2}{ab}+{b}^{\mathrm{2}} −{l}^{\mathrm{2}} +\mathrm{2}{ls}−{s}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}{ab}+{b}^{\mathrm{2}} −{l}^{\mathrm{2}} +\mathrm{2}{ls}−{s}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}\mu{bs}+{b}^{\mathrm{2}} −{l}^{\mathrm{2}} +\mathrm{2}{ls}−{s}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{s}^{\mathrm{2}} −\mathrm{2}\left({l}+\mu{b}\right){s}+{l}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{s}=\left({l}+\mu{b}\right)−\sqrt{\left({l}+\mu{b}\right)^{\mathrm{2}} −\left({l}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}\:\:\left(+\sqrt{...}\:{is}\:{not}\:{suitable}\right) \\ $$$$\Rightarrow{s}=\left({l}+\mu{b}\right)−\sqrt{\left(\mathrm{1}+\mu^{\mathrm{2}} \right){b}^{\mathrm{2}} +\mathrm{2}\mu{bl}} \\ $$

Commented by mrW2 last updated on 10/Feb/18

To 33 sir:  yes. the application of catenary eqn.  in this case is suitable.

$${To}\:\mathrm{33}\:{sir}: \\ $$$${yes}.\:{the}\:{application}\:{of}\:{catenary}\:{eqn}. \\ $$$${in}\:{this}\:{case}\:{is}\:{suitable}. \\ $$

Commented by ajfour last updated on 11/Feb/18

Thanks Sir, but i guess, i will need time  and effort to follow (this catenary  thing).

$${Thanks}\:{Sir},\:{but}\:{i}\:{guess},\:{i}\:{will}\:{need}\:{time} \\ $$$${and}\:{effort}\:{to}\:{follow}\:\left({this}\:{catenary}\right. \\ $$$$\left.{thing}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com