Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29574 by yesasitya22@gmail.com last updated on 10/Feb/18

∫x^6 −1/x^2 −1dx

x61/x21dx

Commented by tawa tawa last updated on 10/Feb/18

∫ ((x^6  − 1)/(x^2  − 1)) dx  = ∫ (((x^2 )^3  − 1^3 )/(x^2  − 1)) dx  Simplify the numerator using the identity:   x^3  − y^3  = (x − y)(x^2  + xy + y^2 )  = ∫ (((x^2  − 1)[(x^2 )^2  + x^2  + 1^2 ])/(x^2  − 1)) dx  = ∫ (((x^2  − 1)(x^4  + x^2  + 1))/(x^2  − 1)) dx  = ∫ (x^4  + x^2  + 1) dx  = (x^5 /5) + (x^3 /3) + x + C  =  (1/5) x^5   +  (1/3) x^3  +  x  +  C

x61x21dx=(x2)313x21dxSimplifythenumeratorusingtheidentity:x3y3=(xy)(x2+xy+y2)=(x21)[(x2)2+x2+12]x21dx=(x21)(x4+x2+1)x21dx=(x4+x2+1)dx=x55+x33+x+C=15x5+13x3+x+C

Commented by ajfour last updated on 10/Feb/18

Quite good.

Quitegood.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com