Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 29633 by Tinkutara last updated on 10/Feb/18

Commented by Tinkutara last updated on 10/Feb/18

http://ibb.co/cyaemS

Commented by 33 last updated on 11/Feb/18

what are the masses of n blocs?

$${what}\:{are}\:{the}\:{masses}\:{of}\:{n}\:{blocs}? \\ $$

Commented by mrW2 last updated on 11/Feb/18

Just a thought, not a proof:  max. possible speed of last mass m_2 :  u=v [(2/(1+((m_2 /m_1 ))^(1/(n+1)) ))]^(n+1)     e.g. m_2 =2m_1 ,n=10:  u≈0.703 v    e.g. m_2 =0.5m_1 ,n=10:  u≈1.406 v    lim_(n→∞) u=(√(m_1 /m_2 )) v  this is the max. possible speed which  the mass m_2  can achieve by placeing  infinitely many blocks between m_1   and m_2 .

$${Just}\:{a}\:{thought},\:{not}\:{a}\:{proof}: \\ $$$${max}.\:{possible}\:{speed}\:{of}\:{last}\:{mass}\:{m}_{\mathrm{2}} : \\ $$$${u}={v}\:\left[\frac{\mathrm{2}}{\mathrm{1}+\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)^{\frac{\mathrm{1}}{{n}+\mathrm{1}}} }\right]^{{n}+\mathrm{1}} \\ $$$$ \\ $$$${e}.{g}.\:{m}_{\mathrm{2}} =\mathrm{2}{m}_{\mathrm{1}} ,{n}=\mathrm{10}: \\ $$$${u}\approx\mathrm{0}.\mathrm{703}\:{v} \\ $$$$ \\ $$$${e}.{g}.\:{m}_{\mathrm{2}} =\mathrm{0}.\mathrm{5}{m}_{\mathrm{1}} ,{n}=\mathrm{10}: \\ $$$${u}\approx\mathrm{1}.\mathrm{406}\:{v} \\ $$$$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{u}=\sqrt{\frac{{m}_{\mathrm{1}} }{{m}_{\mathrm{2}} }}\:{v} \\ $$$${this}\:{is}\:{the}\:{max}.\:{possible}\:{speed}\:{which} \\ $$$${the}\:{mass}\:{m}_{\mathrm{2}} \:{can}\:{achieve}\:{by}\:{placeing} \\ $$$${infinitely}\:{many}\:{blocks}\:{between}\:{m}_{\mathrm{1}} \\ $$$${and}\:{m}_{\mathrm{2}} . \\ $$

Commented by Tinkutara last updated on 11/Feb/18

Commented by Tinkutara last updated on 11/Feb/18

This is the answer. I am getting a slightly different one. I am not getting any exponent of a in numerator rest is the same.

Commented by 33 last updated on 11/Feb/18

what are the masses of n blocs  any info given. plz tell?

$${what}\:{are}\:{the}\:{masses}\:{of}\:{n}\:{blocs} \\ $$$${any}\:{info}\:{given}.\:{plz}\:{tell}? \\ $$

Commented by Tinkutara last updated on 11/Feb/18

Masses of all blocks are different.

Commented by Tinkutara last updated on 11/Feb/18

But answer should be ((2^(n+1) v)/((1+a)^(n+1) )) or  you are getting another answer?

$${But}\:{answer}\:{should}\:{be}\:\frac{\mathrm{2}^{{n}+\mathrm{1}} {v}}{\left(\mathrm{1}+{a}\right)^{{n}+\mathrm{1}} }\:{or} \\ $$$${you}\:{are}\:{getting}\:{another}\:{answer}? \\ $$

Commented by mrW2 last updated on 11/Feb/18

Yes, answer should be ((2^(n+1) v)/((1+a)^(n+1) )), this  is also my answer. But the answer you  gave from the book is  ((2^(n+1)  a^((n(n−1))/2) v)/((1+a)^(n+1) )). This is not correct, I think.

$${Yes},\:{answer}\:{should}\:{be}\:\frac{\mathrm{2}^{{n}+\mathrm{1}} {v}}{\left(\mathrm{1}+{a}\right)^{{n}+\mathrm{1}} },\:{this} \\ $$$${is}\:{also}\:{my}\:{answer}.\:{But}\:{the}\:{answer}\:{you} \\ $$$${gave}\:{from}\:{the}\:{book}\:{is} \\ $$$$\frac{\mathrm{2}^{{n}+\mathrm{1}} \:{a}^{\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}} {v}}{\left(\mathrm{1}+{a}\right)^{{n}+\mathrm{1}} }.\:{This}\:{is}\:{not}\:{correct},\:{I}\:{think}. \\ $$

Commented by Tinkutara last updated on 11/Feb/18

Thanks! I got it now. ����☺

Answered by mrW2 last updated on 12/Feb/18

We have totally n+1 masses:  M_0 , M_1 ,M_2 ,...,M_n ,M_(n+1)   with M_0 =m_1  and M_(n+1) =m_2 .  M_1 ,M_2 ,...,M_n  are unknown and may  be freely determined.    For mass M_i  (i=0,1,2,...,n+1) let′s  assume:  v_(i,1) =speed after collision with M_(i−1)   v_(i,2) =speed after collision with M_(i+1)   v_(0,1) =V_1 =initial speed of first mass m_1   v_(n+1,1) =V_2 =final speed of last mass m_2     Collision M_i  with M_(i+1)  (perfectly elastic):  M_i v_(i,1) =M_i v_(i,2) +M_(i+1) v_(i+1,1)   ⇒M_i (v_(i,1) −v_(i,2) )=M_(i+1) v_(i+1,1)    ...(i)  (1/2)M_i v_(i,1) ^2 =(1/2)M_i v_(i,2) ^2 +(1/2)M_(i+1) v_(i+1,1) ^2     ⇒M_i (v_(i,1) ^2 −v_(i,2) ^2 )=M_(i+1) v_(i+1,1) ^2     ...(ii)  (ii)/(i):  ⇒v_(i,1) +v_(i,2) =v_(i+1,1)   take this into (i):  ⇒M_i (2v_(i,1) −v_(i+1,1) )=M_(i+1) v_(i+1,1)    ⇒2M_i v_(i,1) =(M_i +M_(i+1) )v_(i+1,1)    ⇒(v_(i+1,1) /v_(i,1) )=(2/(1+(M_(i+1) /M_i )))  (v_(1,1) /v_(0,1) )×(v_(2,1) /v_(1,1) )×...×(v_(n+1,1) /v_(n,1) )=(2/(1+(M_1 /M_0 )))×(2/(1+(M_2 /M_1 )))×...×(2/(1+(M_(n+1) /M_n )))  ⇒(v_(n+1,1) /v_(0,1) )=(2^(n+1) /((1+(M_1 /M_0 ))(1+(M_2 /M_1 ))...(1+(M_(n+1) /M_n ))))   ⇒(V_2 /V_1 )=(2^(n+1) /((1+(M_1 /M_0 ))(1+(M_2 /M_1 ))...(1+(M_(n+1) /M_n ))))=2^(n+1) F(M_1 ,M_2 ,...,M_n )   with  F(M_1 ,M_2 ,...,M_n )=(1/((1+(M_1 /M_0 ))(1+(M_2 /M_1 ))...(1+(M_(n+1) /M_n ))))  or  F(M_1 ,M_2 ,...,M_n )=((M_0 M_1 M_2 ...M_n )/((M_0 +M_1 )(M_1 +M_2 )...(M_n +M_(n+1) )))  (∂F/∂M_i )=((M_0 M_1 M_2 ...M_n )/((M_0 +M_1 )(M_1 +M_2 )...(M_n +M_(n+1) )M_i ))−((M_0 M_1 M_2 ...M_n (M_(i−1) +M_i +M_i +M_(i+1) ))/((M_0 +M_1 )(M_1 +M_2 )...(M_n +M_(n+1) )(M_(i−1) +M_i )(M_i +M_(i+1) )))  (∂F/∂M_i )=F(M_1 ,M_2 ,...,M_n ){(1/M_i )−((M_(i−1) +2M_i +M_(i+1) )/((M_(i−1) +M_i )(M_i +M_(i+1) )))}  (∂F/∂M_i )=F(M_1 ,M_2 ,...,M_n ){((M_(i−1) M_i +M_i ^2 +M_(i−1) M_(i+1) +M_i M_(i+1) −M_(i−1) M_i −2M_i ^2 −M_i M_(i+1) )/(M_i (M_(i−1) +M_i )(M_i +M_(i+1) )))}  (∂F/∂M_i )=F(M_1 ,M_2 ,...,M_n ){((M_(i−1) M_(i+1) −M_i ^2 )/(M_i (M_(i−1) +M_i )(M_i +M_(i+1) )))}  For F(M_1 ,M_2 ,...,M_n ) to be maximum, (∂F/∂M_i )=0, i=1,2,..,n  ⇒M_(i−1) M_(i+1) −M_i ^2 =0  ⇒(M_i /M_(i−1) )=(M_(i+1) /M_i ), i=1,2,..,n  i.e. M_0 , M_1 ,M_2 ,...,M_n ,M_(n+1)  must buid  a G.P. to get maximum for (V_2 /V_1 ),  i.e. (M_1 /M_0 )=(M_2 /M_1 )=...=(M_(n+1) /M_n )=a (say)  ⇒(M_1 /M_0 )×(M_2 /M_1 )×(M_3 /M_2 )×...×(M_(n+1) /M_n )=a^(n+1)   ⇒(M_(n+1) /M_0 )=a^(n+1) =(m_2 /m_1 )  ⇒a=((m_2 /m_1 ))^(1/(n+1))   ⇒((V_2 /V_1 ))_(max) =(2^(n+1) /((1+a)^(n+1) )) =((2/(1+a)))^(n+1)   ⇒max. V_2 =[(2/(1+((m_2 /m_1 ))^(1/(n+1)) ))]^(n+1) V_1

$${We}\:{have}\:{totally}\:{n}+\mathrm{1}\:{masses}: \\ $$$${M}_{\mathrm{0}} ,\:{M}_{\mathrm{1}} ,{M}_{\mathrm{2}} ,...,{M}_{{n}} ,{M}_{{n}+\mathrm{1}} \\ $$$${with}\:{M}_{\mathrm{0}} ={m}_{\mathrm{1}} \:{and}\:{M}_{{n}+\mathrm{1}} ={m}_{\mathrm{2}} . \\ $$$${M}_{\mathrm{1}} ,{M}_{\mathrm{2}} ,...,{M}_{{n}} \:{are}\:{unknown}\:{and}\:{may} \\ $$$${be}\:{freely}\:{determined}. \\ $$$$ \\ $$$${For}\:{mass}\:{M}_{{i}} \:\left({i}=\mathrm{0},\mathrm{1},\mathrm{2},...,{n}+\mathrm{1}\right)\:{let}'{s} \\ $$$${assume}: \\ $$$${v}_{{i},\mathrm{1}} ={speed}\:{after}\:{collision}\:{with}\:{M}_{{i}−\mathrm{1}} \\ $$$${v}_{{i},\mathrm{2}} ={speed}\:{after}\:{collision}\:{with}\:{M}_{{i}+\mathrm{1}} \\ $$$${v}_{\mathrm{0},\mathrm{1}} ={V}_{\mathrm{1}} ={initial}\:{speed}\:{of}\:{first}\:{mass}\:{m}_{\mathrm{1}} \\ $$$${v}_{{n}+\mathrm{1},\mathrm{1}} ={V}_{\mathrm{2}} ={final}\:{speed}\:{of}\:{last}\:{mass}\:{m}_{\mathrm{2}} \\ $$$$ \\ $$$${Collision}\:{M}_{{i}} \:{with}\:{M}_{{i}+\mathrm{1}} \:\left({perfectly}\:{elastic}\right): \\ $$$${M}_{{i}} {v}_{{i},\mathrm{1}} ={M}_{{i}} {v}_{{i},\mathrm{2}} +{M}_{{i}+\mathrm{1}} {v}_{{i}+\mathrm{1},\mathrm{1}} \\ $$$$\Rightarrow{M}_{{i}} \left({v}_{{i},\mathrm{1}} −{v}_{{i},\mathrm{2}} \right)={M}_{{i}+\mathrm{1}} {v}_{{i}+\mathrm{1},\mathrm{1}} \:\:\:...\left({i}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{M}_{{i}} {v}_{{i},\mathrm{1}} ^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{M}_{{i}} {v}_{{i},\mathrm{2}} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{M}_{{i}+\mathrm{1}} {v}_{{i}+\mathrm{1},\mathrm{1}} ^{\mathrm{2}} \:\: \\ $$$$\Rightarrow{M}_{{i}} \left({v}_{{i},\mathrm{1}} ^{\mathrm{2}} −{v}_{{i},\mathrm{2}} ^{\mathrm{2}} \right)={M}_{{i}+\mathrm{1}} {v}_{{i}+\mathrm{1},\mathrm{1}} ^{\mathrm{2}} \:\:\:\:...\left({ii}\right) \\ $$$$\left({ii}\right)/\left({i}\right): \\ $$$$\Rightarrow{v}_{{i},\mathrm{1}} +{v}_{{i},\mathrm{2}} ={v}_{{i}+\mathrm{1},\mathrm{1}} \\ $$$${take}\:{this}\:{into}\:\left({i}\right): \\ $$$$\Rightarrow{M}_{{i}} \left(\mathrm{2}{v}_{{i},\mathrm{1}} −{v}_{{i}+\mathrm{1},\mathrm{1}} \right)={M}_{{i}+\mathrm{1}} {v}_{{i}+\mathrm{1},\mathrm{1}} \: \\ $$$$\Rightarrow\mathrm{2}{M}_{{i}} {v}_{{i},\mathrm{1}} =\left({M}_{{i}} +{M}_{{i}+\mathrm{1}} \right){v}_{{i}+\mathrm{1},\mathrm{1}} \: \\ $$$$\Rightarrow\frac{{v}_{{i}+\mathrm{1},\mathrm{1}} }{{v}_{{i},\mathrm{1}} }=\frac{\mathrm{2}}{\mathrm{1}+\frac{{M}_{{i}+\mathrm{1}} }{{M}_{{i}} }} \\ $$$$\frac{{v}_{\mathrm{1},\mathrm{1}} }{{v}_{\mathrm{0},\mathrm{1}} }×\frac{{v}_{\mathrm{2},\mathrm{1}} }{{v}_{\mathrm{1},\mathrm{1}} }×...×\frac{{v}_{{n}+\mathrm{1},\mathrm{1}} }{{v}_{{n},\mathrm{1}} }=\frac{\mathrm{2}}{\mathrm{1}+\frac{{M}_{\mathrm{1}} }{{M}_{\mathrm{0}} }}×\frac{\mathrm{2}}{\mathrm{1}+\frac{{M}_{\mathrm{2}} }{{M}_{\mathrm{1}} }}×...×\frac{\mathrm{2}}{\mathrm{1}+\frac{{M}_{{n}+\mathrm{1}} }{{M}_{{n}} }} \\ $$$$\Rightarrow\frac{{v}_{{n}+\mathrm{1},\mathrm{1}} }{{v}_{\mathrm{0},\mathrm{1}} }=\frac{\mathrm{2}^{{n}+\mathrm{1}} }{\left(\mathrm{1}+\frac{{M}_{\mathrm{1}} }{{M}_{\mathrm{0}} }\right)\left(\mathrm{1}+\frac{{M}_{\mathrm{2}} }{{M}_{\mathrm{1}} }\right)...\left(\mathrm{1}+\frac{{M}_{{n}+\mathrm{1}} }{{M}_{{n}} }\right)}\: \\ $$$$\Rightarrow\frac{{V}_{\mathrm{2}} }{{V}_{\mathrm{1}} }=\frac{\mathrm{2}^{{n}+\mathrm{1}} }{\left(\mathrm{1}+\frac{{M}_{\mathrm{1}} }{{M}_{\mathrm{0}} }\right)\left(\mathrm{1}+\frac{{M}_{\mathrm{2}} }{{M}_{\mathrm{1}} }\right)...\left(\mathrm{1}+\frac{{M}_{{n}+\mathrm{1}} }{{M}_{{n}} }\right)}=\mathrm{2}^{{n}+\mathrm{1}} {F}\left({M}_{\mathrm{1}} ,{M}_{\mathrm{2}} ,...,{M}_{{n}} \right)\: \\ $$$${with} \\ $$$${F}\left({M}_{\mathrm{1}} ,{M}_{\mathrm{2}} ,...,{M}_{{n}} \right)=\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{{M}_{\mathrm{1}} }{{M}_{\mathrm{0}} }\right)\left(\mathrm{1}+\frac{{M}_{\mathrm{2}} }{{M}_{\mathrm{1}} }\right)...\left(\mathrm{1}+\frac{{M}_{{n}+\mathrm{1}} }{{M}_{{n}} }\right)} \\ $$$${or} \\ $$$${F}\left({M}_{\mathrm{1}} ,{M}_{\mathrm{2}} ,...,{M}_{{n}} \right)=\frac{{M}_{\mathrm{0}} {M}_{\mathrm{1}} {M}_{\mathrm{2}} ...{M}_{{n}} }{\left({M}_{\mathrm{0}} +{M}_{\mathrm{1}} \right)\left({M}_{\mathrm{1}} +{M}_{\mathrm{2}} \right)...\left({M}_{{n}} +{M}_{{n}+\mathrm{1}} \right)} \\ $$$$\frac{\partial{F}}{\partial{M}_{{i}} }=\frac{{M}_{\mathrm{0}} {M}_{\mathrm{1}} {M}_{\mathrm{2}} ...{M}_{{n}} }{\left({M}_{\mathrm{0}} +{M}_{\mathrm{1}} \right)\left({M}_{\mathrm{1}} +{M}_{\mathrm{2}} \right)...\left({M}_{{n}} +{M}_{{n}+\mathrm{1}} \right){M}_{{i}} }−\frac{{M}_{\mathrm{0}} {M}_{\mathrm{1}} {M}_{\mathrm{2}} ...{M}_{{n}} \left({M}_{{i}−\mathrm{1}} +{M}_{{i}} +{M}_{{i}} +{M}_{{i}+\mathrm{1}} \right)}{\left({M}_{\mathrm{0}} +{M}_{\mathrm{1}} \right)\left({M}_{\mathrm{1}} +{M}_{\mathrm{2}} \right)...\left({M}_{{n}} +{M}_{{n}+\mathrm{1}} \right)\left({M}_{{i}−\mathrm{1}} +{M}_{{i}} \right)\left({M}_{{i}} +{M}_{{i}+\mathrm{1}} \right)} \\ $$$$\frac{\partial{F}}{\partial{M}_{{i}} }={F}\left({M}_{\mathrm{1}} ,{M}_{\mathrm{2}} ,...,{M}_{{n}} \right)\left\{\frac{\mathrm{1}}{{M}_{{i}} }−\frac{{M}_{{i}−\mathrm{1}} +\mathrm{2}{M}_{{i}} +{M}_{{i}+\mathrm{1}} }{\left({M}_{{i}−\mathrm{1}} +{M}_{{i}} \right)\left({M}_{{i}} +{M}_{{i}+\mathrm{1}} \right)}\right\} \\ $$$$\frac{\partial{F}}{\partial{M}_{{i}} }={F}\left({M}_{\mathrm{1}} ,{M}_{\mathrm{2}} ,...,{M}_{{n}} \right)\left\{\frac{{M}_{{i}−\mathrm{1}} {M}_{{i}} +{M}_{{i}} ^{\mathrm{2}} +{M}_{{i}−\mathrm{1}} {M}_{{i}+\mathrm{1}} +{M}_{{i}} {M}_{{i}+\mathrm{1}} −{M}_{{i}−\mathrm{1}} {M}_{{i}} −\mathrm{2}{M}_{{i}} ^{\mathrm{2}} −{M}_{{i}} {M}_{{i}+\mathrm{1}} }{{M}_{{i}} \left({M}_{{i}−\mathrm{1}} +{M}_{{i}} \right)\left({M}_{{i}} +{M}_{{i}+\mathrm{1}} \right)}\right\} \\ $$$$\frac{\partial{F}}{\partial{M}_{{i}} }={F}\left({M}_{\mathrm{1}} ,{M}_{\mathrm{2}} ,...,{M}_{{n}} \right)\left\{\frac{{M}_{{i}−\mathrm{1}} {M}_{{i}+\mathrm{1}} −{M}_{{i}} ^{\mathrm{2}} }{{M}_{{i}} \left({M}_{{i}−\mathrm{1}} +{M}_{{i}} \right)\left({M}_{{i}} +{M}_{{i}+\mathrm{1}} \right)}\right\} \\ $$$${For}\:{F}\left({M}_{\mathrm{1}} ,{M}_{\mathrm{2}} ,...,{M}_{{n}} \right)\:{to}\:{be}\:{maximum},\:\frac{\partial{F}}{\partial{M}_{{i}} }=\mathrm{0},\:{i}=\mathrm{1},\mathrm{2},..,{n} \\ $$$$\Rightarrow{M}_{{i}−\mathrm{1}} {M}_{{i}+\mathrm{1}} −{M}_{{i}} ^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\frac{{M}_{{i}} }{{M}_{{i}−\mathrm{1}} }=\frac{{M}_{{i}+\mathrm{1}} }{{M}_{{i}} },\:{i}=\mathrm{1},\mathrm{2},..,{n} \\ $$$${i}.{e}.\:{M}_{\mathrm{0}} ,\:{M}_{\mathrm{1}} ,{M}_{\mathrm{2}} ,...,{M}_{{n}} ,{M}_{{n}+\mathrm{1}} \:{must}\:{buid} \\ $$$${a}\:{G}.{P}.\:{to}\:{get}\:{maximum}\:{for}\:\frac{{V}_{\mathrm{2}} }{{V}_{\mathrm{1}} }, \\ $$$${i}.{e}.\:\frac{{M}_{\mathrm{1}} }{{M}_{\mathrm{0}} }=\frac{{M}_{\mathrm{2}} }{{M}_{\mathrm{1}} }=...=\frac{{M}_{{n}+\mathrm{1}} }{{M}_{{n}} }={a}\:\left({say}\right) \\ $$$$\Rightarrow\frac{{M}_{\mathrm{1}} }{{M}_{\mathrm{0}} }×\frac{{M}_{\mathrm{2}} }{{M}_{\mathrm{1}} }×\frac{{M}_{\mathrm{3}} }{{M}_{\mathrm{2}} }×...×\frac{{M}_{{n}+\mathrm{1}} }{{M}_{{n}} }={a}^{{n}+\mathrm{1}} \\ $$$$\Rightarrow\frac{{M}_{{n}+\mathrm{1}} }{{M}_{\mathrm{0}} }={a}^{{n}+\mathrm{1}} =\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} } \\ $$$$\Rightarrow{a}=\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)^{\frac{\mathrm{1}}{{n}+\mathrm{1}}} \\ $$$$\Rightarrow\left(\frac{{V}_{\mathrm{2}} }{{V}_{\mathrm{1}} }\right)_{{max}} =\frac{\mathrm{2}^{{n}+\mathrm{1}} }{\left(\mathrm{1}+{a}\right)^{{n}+\mathrm{1}} }\:=\left(\frac{\mathrm{2}}{\mathrm{1}+{a}}\right)^{{n}+\mathrm{1}} \\ $$$$\Rightarrow{max}.\:{V}_{\mathrm{2}} =\left[\frac{\mathrm{2}}{\mathrm{1}+\left(\frac{{m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }\right)^{\frac{\mathrm{1}}{{n}+\mathrm{1}}} }\right]^{{n}+\mathrm{1}} {V}_{\mathrm{1}} \\ $$

Commented by Tinkutara last updated on 11/Feb/18

How can you say that maximum occurs when masses are in GP? It also requires a proof.

Commented by mrW2 last updated on 11/Feb/18

I have added the proof. But that was obvious.

Commented by Tinkutara last updated on 11/Feb/18

Thanks but we can also maximize the expression of velocity acquired by last block when there are 3 such different blocks to get relation.

Commented by mrW2 last updated on 11/Feb/18

That′s possible and easier. I wanted a  general solution for any number of   blocks.

$${That}'{s}\:{possible}\:{and}\:{easier}.\:{I}\:{wanted}\:{a} \\ $$$${general}\:{solution}\:{for}\:{any}\:{number}\:{of}\: \\ $$$${blocks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com