Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 29658 by gyugfeet last updated on 11/Feb/18

tanθ+tan2θ+(√3) tanθ.tan2θ=(√3)     (0^(o ) ≤θ≤360)

tanθ+tan2θ+3tanθ.tan2θ=3(0oθ360)

Answered by mrW2 last updated on 11/Feb/18

tanθ+tan2θ=(√3)(1− tanθ.tan2θ)  ((tan θ+tan 2θ)/(1−tan θ tan 2θ))=(√3)  tan 3θ=(√3)  3θ=nπ+(π/3)  θ=((nπ)/3)+(π/9)  within [0,2π]:  θ=(π/9),((4π)/9),((7π)/9),((10π)/9),((13π)/9),((16π)/9)  or  θ=20°,80°,140°,200°,260°,320°.

tanθ+tan2θ=3(1tanθ.tan2θ)tanθ+tan2θ1tanθtan2θ=3tan3θ=33θ=nπ+π3θ=nπ3+π9within[0,2π]:θ=π9,4π9,7π9,10π9,13π9,16π9orθ=20°,80°,140°,200°,260°,320°.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com